-

<

Structured Programming System PE-T-513, REV 1

DATE: - March 5 1981

€fJO: RD&E
FROM: Bridget Hale and John Holloway
SUBJECT: Structured Programming System

REFERENCE: None

SPS - Structured Programming System

Abstract

In December 1979 a project was 1initiated in Bedford to review the
Structured Design and Programming Techniques in use both in R&D (UK)
and outside Prime.

C

The interest in such techniques suggested that the project should go on
to create:

a simple, but logically consistent, set of tools
and

a short Programmer’'s Guide

This document describes the results and is, in effect, the Programmer's

“@@uide.

-

Structured Programming System PE-T-513, REV 1

@h Table of Contents

1 Introduction.....eeeceen.

¢ 0 0 00 00000000 o 00 . L A] . . 3

2 SPS Pl"Oj eCt ------- 0 5 06 0000000 0 e 0 v 00 00 s 0 e LR . e . e s o 0o v 0 . . e .o 5
3 Routine Format.......... ceeecncasas et ceeenceesneas ceeaes 6
RSQUil’ement- ® 0 ¢ o o v 0 0 0 0 0 0 e o ¢ o o 0 v 0 LI] ® 06 0 9 0 0 0o 0 0 0 0 00 . LI I 4 . L] . 6

Titlecuoocoooo.ocoo.

Description....cvoen Ceecearecraeen Ceeescenoenuse ceteconoanas ::7
Design...... ceeanse

LI Wt W
OVUL =0 N —

® & ¢ 0 5 0 00 0 e 0 ¢ ® 00606 0 ¢ 200 000 0 0 ® © 0 0 0 000 2 00 06000 0 0 09

4 Design Expression..... et e e e eetcesa e aneas . .o
f& 4,1 General........... ceeeenseaa teeresssencanene ceccceasannas ceeeal2
.2 STROMA.......... cee e ‘e .
.2.1 Labelling........ cevans ceeanen Checs st e e sasaressanes R)
Invocation....... e ereccerracsensns ceteesaierseeenanan 015
Invoked Design Units....cocevvieneennns cesscsess s
Sequence...... e cseeceesscaet sttt ancns ceetaeessaanes ..16
Selection.......... cresnucssessacssscnsnnss]
Iteration........... Ceeeteesereansasee e ceescssesansasase 17
Event Handling....vciivieneneeennracanans ceereesecenaessl8B
Special Words...... cteerecersteassstasasns ceeereanns A

L] -
PPN

ErREEEFEEFEFEF
00OVl &=t N

¢

5 Project Libraries........iccv0.. et ts s ecerseanns Ceeecreraasraans 20
5'1 PrOjeCt Catalogue ooooooooo ® 8 9 9 0 0 ® e 08 0N e e s L I B I N ovoo.oo..tI1321

6 Walkthroughs..........

T TEMPLATE ...ttt eeeeeoesoosannonans et ecccenonncn Ceeseesesssesesenanaens 25
7.1 Function.....eeeeeeeoans oo
gh T.2 User Interface...eeeeeeeeeccncaceses
T.3 Processing...c.eveeieeereeeennes

8 REFORM..ieeveveeeeeanean e cereecettaneans ceereeens e cecsreccevanos 28
Bl FUNCELION .t ittt eneeeneeseseaneseesonanannonnns
8.2 User Interface........ Ceteeane ceeoeaa Gt et e ceecesvenns ceeeeseees28
8.3 ProCesSSiNEg...eeeeeeeeeseecereeosoenasennnans -4

8.3.1 Source format........... et ecsetenaanens ceeeeeas ceeeeeeel9
8.3.2 Output format...eeeeereeeenenns et teee e cetereeecaean 30
8.3.3 Checking....ceeeeeeene ctececeres e st e eeneenn ceeeeseseel
8.3.3.1 Syntax Checking............ C et e e et ececeenannas .31
8.3.3.2 Consistency Checking...... e e reee e eeed 31

9 RESTATE....

¢

Structured Programming System PE-T-513, REV 1

9‘1 FunCtion ® ® ¢ 8 O B & 5 S S & B G VP O P P E S G E M S PR G S P s 4 e s 0...0..'32
9.2 User‘ Interface. " 8 8 9 & 9 e e e . e 0 ® & & 9 0 @ 9 0 O * 2 0 0 " 0 0 s e & s 32 =
9.3 Processing.b. e o o5 0 o 9 @ 8 % & B O 8 8 0 8 8 O O O 9P S 6 0 S B S P T TS e e s e o L .33 ﬂ
9.3.1 Input File Processing........ Cecerseneaas e reaa ceeevse33
9.3.2 Output File Processing.....eceeeeeens ceeesarans cesreees «+33
10 INFoRMOOQCl..."..!..'... ® &6 & 8 o o ® &4 & 6 6 8 & 0 % 0 8 0 @ % ¢ 5 0 & & & 35
10.1 FunCtion ® & & &2 ¢ & & ® " ¥ O ¢ O ® & o 0 6 & 0 0 0 & 0 8 e .35
10.2 User Interface....ccciieieeennnnnne Ceerterecstssensrenoes e N 35
10.3 Processing..C.."'.'.Q.CCI.. OOOOOO ® 8 ¢ & ¢ 0 8 0 5 0 0 0 0 P S0 0P OGS GRS e ..36
10. 301 Limitations.. @ & 8 & % & 8 ¢ 0 8 & 9 4 S P 0 O S e S P S W e e e 00 VPR S e e 4 & 9 o 0 .36
10.3.2 Character-level Processing.....ceeeee. 161
10.3.3 Comment Processing......ccceeeeves ceeteceans teeressesseaalb
10.3.4 Label Processing........ et eerteenacn ceessesessenasnans 38
10.3.5 Statement ProcesSiNg....cceeeeeeecacocanaoans ceereeseeal8
10.3.6 Declaration and '
11 Warnier Diagrams.....ceiveeeererscnecocanns ceeseaas seseseersasaeasll
111 REWARD....vvuvnneneenenennenn e e ceeel 40
12 SDL * & & @ & e ¢ & & & 0 o o *® O & ¢ 0 2 0 @ L‘1
13 DENOTEQ....'Q.‘C....C..'l....C.‘lll..l."..'. *® & & o &5 @ o 0 ‘."..u2
13.1 FunCtion....QI...Il...'.'.."......l' llllll ® ® 5 ® @ e o0 .C......Q.u2
1302 User Interface ® & @ & ¢ & & 5 % 0 0 9 6 s s 0 s 00 * o o 0 0 ® o ¢ o 0)"2
13.3 Processing.o...l.'.....'..l"....".....Q..Q.l....‘.'. uu
13.3.1 Project Catalogue Processing........ Ceesteersenasnes —
13.3.2 1Input File Processing.....cieeeeencscecccns N 12
13.3.3 Title Processing.....vevecerscancasanns B
13.3.4 Description Processing....eveeeeeeeecnsonsons cesesesss b
13. 3'5 Design PrOCessing. & & &6 2 0 0 & 0 ® O & 0 4 8 ° @ O % O S S 0 e 80 S s 0o e o o .u6
13.3.6 Runoff Command Embedding by the User......... ceeseenes U7
13.4 Runoff Considerations........... Cieeseceasenne S 3
T4 Design NotebooK...eeeeeoeeeeeaereoneoans Cececsecncas ceceesasasssssld9
15 Other Areas for Consideration.....ieeeeeeesocenccencanncnnSOﬁ%
Appendix A - Routine Format for Design fileS....eieeeesonnoocnanns eeee51
Appendix B - Routine Format for PL/I files..iieeevencocnn S Y4
Appendix C - Routine Format for Fortran fileS...ceceseas cetceceasssen 54
'Appendix D - Routine Format for PMA files..... cessessssasecc s ceneans 55
Appendix E - Routine Format for COBOL fileS...ieeeeeeeennn ceecenesnas 56
Appendix F - Routine Format for Pascal files.....ccoveeeenvencans cee:.58
Appendix G - Routine Format for Basic fileS....cceeeeeencerrcnccacns .60

T

Structured

Appendix H

géppendix I

Appendix J

Appendix X

Programming System PE-T-513, REV 1
- Routine Format for CPL files........ Cesecseeaeneseanenas 62
- Routine Format for LISP fileS...ieseececiacacnaens ceseasb3
- Routine Format fOl" EMACS files -------- 0-.'0.---0..0'.0-.64
- U-Oozu.... -------------- R EEEEEEE NI I I NS B SRR R ST N I 65

Structured Programming System ’ PE-T-513, REV .1

i Changes from Previous Version

1All tools have been extended to process files with the followingﬂﬁ5
isuffices:

.LISP
.EMACS

nd the previously supported suffix .BASICV has been changed to .BASIC

1
|
]
i
| a
ito bring it in line with the file naming standards.
A
(

new tool has been added - TEMPLATE - which builds a dummy SPS module
including Prime Copyright lines).

Some changes have been made to DENOTE with respect to the manner in
which a Book List is processed.

Page 2

Structured Programming System PE-T-513, REV 1

1 Introduction

Today there 1is a great deal of interest, within the Computer Industry,
in something often rather abstractly described as 'Structured
Programming'.

Much of this 1is encouraged by the fact that rarely a week passes
without the publication of an article in the trade press, on some new
technique or variant of an existing technique; or the publishing of
yet another book on that same subject.

Opinions on the benefit of the use of these techniques vary greatly,
from:
The belief that a 'junior' member of staff using a Structured
Programming technique is as good as, or better than, the most
experienced member of staff (and is certainly cheaper).
to:
The belief that the whole theory of Structured Programming can be
summarised in the phrase 'Ban the GOTO'.

emin answer: to the first of the above, no Structured Programming
technique can replace what a person lacks in either experiance or
ability, in fact a misguided or inappropriate use of such techniques
may reduce the per formance of a 'good' and/cor 'experienced' programmer;

to the second, that it is a naive misjudgement of the scope of
Structured Pregramming.

In many ways 'Structured Programming' suffers from the word
'"Programming' in its name in that it is frequently dismissed as only
€m3eing applicable to programmers.

In actual fact the term Structured Programming covers a wide range of
ideas/techniques ranging over all of the following:

programming libraries
structured coding
design methods
e.g. Top-Down

@h Data Driven

ete.

project administration
project organisation
documentation
standards

and many more.

Unfortunately where Structured Programming techniques are used this is

frequently in a rather random fashion and thus the major benefits to be

gained from such an approach are invariably lost.

Where Structured Programming is used well the following should arise:

1. A general awareness of different design techniques and their
@@ relevance to particular stages of the design process.

Page 3

Structured Programming System PE-T-513, REV .1

This serves to strengthen a design and results in methodologies
being established over a period of time.

=

2. The combination of a set of techniques that complement one another
thus re-inforcing the benefits to be gained from such an approach.
It is important to appreciate that the random use of disjoint
techniques (in the worst case) can actually damage a project.

3. The reduction of the cost of a product when considered over the
whole of a product's life-cyele. At the current time the only
costs predicted when estimating the cost of a product are those
that are incurred during development. .

In many cases these costs are just the tip of an iceberg. The
real costs only become visible years later when the costs of the
following can be calculated:

a) customer support

b) 'bug' administration o

e) quality assurance (repeated for each update) f%

d) loss of goodwill and/or wupgrade orders from unhappy
customers

e) bug fixers

f) delays to new projects as a result of re-assignment of

per sonnel for ‘'short' periods away from current
assignments to maintenance

These costs only disappear totally when a product is withdrawn or
re-implemented. ﬁ%

The SPS project has attempted to look at what is already in use in the
department and at what people would like to see. This has been done
with the aim of optimising the above.

Page u

Structured Programming System PE-T-513, REV 1

2 SPS Project

s~ ne SP3S project was started by holding sessions with as many of the
nembers of the organisation as was possible, requesting input on the
following topics:

design techniques

design languages

program layout
documentation

structured coding methods
tools

People were thus given the opportunity to express their views on what
they did, what they would like to do and what they would like to help
them.

The opinions expressed by our collegues at that stage of the project
ranged over a surprisingly large area and are collated and summarised

«in the document U-0024, these opinions are also included here as an
appendix.

The project then went on to try to 1link this input to the more
popular/prominent ideas from outside, to ¢try to satisfy people's
requirements in conjunction with maximising the benefits to be gained
from the adoption of Structured Programming techniques.

This document describes the results produced by the SPS project. It

escribes the tools produced by the personnel assigned to the project
. .nd can act as a programmer's guide to the use of these tools. This
document also draws attention to a number of areas where further work
could be done to either establish standards or to produce further
tools.,

It is hoped that in the future as projects establish the need for a
tool, that +they will develop these in a manner such that they will be
consistent with the SPS package and will be donated to SPS. In this
manner the SPS project will continue to live and grow.

@“he use of the SPS tools and style by a project should lead to a

consistent and systematic approach to project organisation and product
development.
This should over a period of time lead to an increase in the guality of
the products produced, reduce the effort required to achieve this
quality, and a visible decrease in the amount of maintenance required
by such products as a consequence.

When reading the sections within this document it is important to
realise that the requirements/behaviour of the various tools and
techniques are highly dependant on one another. For this reason the
requirements of a particular language environment when applied to the
items described in this document are discussed in a series of
appendices.

&

Page 5

Structured Programming System . PE-T-513, REV .1

3 Routine Format

)

3.1 Requirement

From the beginning of a project information is being built up about the
project's requirements, this then evolves and grows into a design from
which a program is eventually coded.

This information has always existed in some form for a project but has
not always been maintained on the machine. In view of the distributed
locations of R&D and the presence of software for transmitting
information from one machine to another there is a very strong reason
for putting this information onto the machine.

However, it 1is also important that such information be trusted, by
those who refer to it, to be an up-to-date representation of that
information. 1In order that the ease of updating such information be'ﬁﬁ
inecreased it is proposed that information asscciated with a particular
routine be located with the source of that routine.

A format for a routine is therfore proposed as follows:
TITLE: the identity of the routine

START-DESCRIPTION:
This is a block of narrative deseribing the function of the ™
routine. "
At a project level a decision may be taken as to the type of

information included here.
END-DESCRIPTION

START-DESIGN:
This is a block of design information.
The design may be expressed in any form suitable for

inclusion in a text-file. ﬁ%
END-DESIGN

START-CODE :
The program
END~CODE

In addition to the above the following may be present at the start of
the file in which the routine(s) are held:

the mandatory first 3 lines (see PE-A-43)

START-HISTORY:
This is a Dblock of history information created, either
manually or automatically, (when either the Source File
System or a callable editor in conjunction with CPL is used)
to control the generation and meodification of the file. =
END-HISTORY

Page 6

¢

Structured Programming System PE-T-513, REV 1

The routine format recommended will encourage people to maintain
=project information of both a descriptive and a design nature within
-heir programs. :

The descriptive information should be created initially and modified,
as appropriate, when the routine is implemented.

The description should not be too detailed when originally written; in
this way it will survive many detailed changes in the succeeding coding
Wwithout the need for alteration.

Once the first implementation has been produced, it is impossible to
make any logical changes to a routine without consulting the narrative
and the design. With the suggested format these will be at hand. It
only makes sense to change them at the same time as changing the code.

The information contained in these blocks contributes substantially to
the ease with which a project may be maintained and also to the
production of a project's internal documentation.

ﬂﬁhe format shown above only indicates a single occurrence of narrative,
sesign and code. In practice a routine may have any number of these
blocks in any sequence.
3.2 Title
The function of the title line is to identify the routine. This may
appear to be cosmetic, but it does enable the user to identify

@%ndividual routines when multiple routines are included in a file. It

lso identifies routines to some of the tools described later in this
document.

The format of the title line is:
TITLE: <name>
where <name> is any sequence of characters.

@mhis format is affected by the commenting requirement of the language

‘1n which the routine is written. This is described fully in a series
of appendices.

3.3 Description

The function of the Description Block is to describe the function of
the routine in as detailed a level as is considered to be appropriate,
ln a location where it can be easily found.

It may also be the case that some or all of the following should be
included:

L3

parameter definition/description
externals definition/description
abnormal conditions definition/description

&

Page 7

Structured Programming System PE-T-513, REV 1

It is a responsibility of a Project Leader to define what should be
present in a Description Block for a particular project. It should
however be remembered that one of the subsequent uses of this block

will be by a maintenance programmer, who may or may not be familiar
with the routine.

The format of the Description Block is:

START-DESCRIPTION: [<name>]
block of narrative
END-DESCRIPTION

where <name> is an optional sequence of characters that may be included
for information purposes. (If present this will be processed by some
of the tools described in this document.)

This format is affected by the commenting requirements of the 1language

in which the routine is written. This is described fully in a series
of appendices.

3.4 Design

The function of the Design Block is to document the design of the
routine in as detailed a level as is considered to be appropriate, in a
location where it can be easily found.

No comments will be made at this point about what design technique
should be used here, other than that it must be capable of being
expressed in this block.

The design information can be expressed in many forms, for example:

pseudo=-language
decision tables

flow charts

SADT charts
Warnier-Orr diagrams
ete.

It may, however, be the case that some design techniques are harder to
express in a Design Block than others. What is to be stressed at this
point is that the need for this information to be documented is of
paramount importance.

The format of the Design Block is:

START-DESIGN: [<name>]
block of design information
END-DESIGN

where <name> is an optional sequence of characters that may be included

for information purposes. (If present this will be processed by some =y

of the tools described in this document.)

Page 8

4 ’

Strucfured Programming System PE-T-513, REV 1

This format is affected by the commenting requirements of the language
in which the routine is written. This is described fully in a series
of appendices.

3.5 Code

The function of the code block is to identify the presence of the code.

It is of course obvious that most compilers can recognise code. The
presence of this block may conceivably be useful to some future tool
that performs some, as yet unknown, processing on a routine.

The format of the Code Block is:

START-CODE: [<name>]
Source code of routine
gm END-CODE

where <{name> is an optional sequence of characters that may be included
for information purposes.

This format 1is affected by the commenting requirements of the language
in which the routine is written. This is described fully in a series
of appendices.

It would of course be possible to make unlimited pronouncements on how
@hpeople should code their programs. This is not within the scope of the

SPS project.

A number of general points, however, can be made:

1. Structured coding principles should be adhered to, though not ¢to
the exclusion of common sense.

2. The code should be indented.

3. Any naming conventions should be documented, either at a routine
level or at a project level, as appropriate.

4, 'Block' comments should be used rather than 'end-of-line' comments
whenever possible, particularly in the case of block structured
languages. Any formatting performed by a tool may disfigure
end-of-line comments and decrease their usefulness.

5. Guidelines could be provided to indicate a mapping between the
constructs of commonly used design techniques and those available
in the more commonly used implementation languages.

and obviously many more.

Page 9

Structured Programming System PE~-T-513, REV 1

3.6 The Lifecycle of the Routine

A lot has been written by various people on the subject of 'Top-Downﬁ%
Design' and 'Step-Wise Refinement'. In actual fact, a majority of
people design their programs using this sort of approach, whether
consciously or unconsciously.

As one thinks through a problem one naturally decomposes it into its
constituent parts, each of which may be further decomposed. It is this

approach that ensures that any problem unit is not so 1large that it
cannot be comprehended.

Any module 1is an elaboration of the parent module that spawned it, and
is itself the controlling parent for its own child routines.

It is proposed that a routine will start off its life as 1little more
than a title and a block of very high level narrative. As time goes on
the level of this narrative will become more detailed. This narrativeﬁ%
should not be viewed as something that can be disposed of at some point
along the development path but as something that lives and grows with

the project. It will later be extracted to become part of an external
design description.

This can now be wused as input to a Walkthrough at which the
conceptualisation of the product is reviewed and validated, and its
interface to 1its operating environment is verified. If a true
'Top-Down' approach 1is adopted then the Description Blocks of all
routines will exist before progressing to the next stage.

The next stage in the life of a routine is to take the content of the
Description Block and express this as a Design Block. At this stage
more detail becomes apparent in the expression of the routine. This
design information is also alive and able to grow.

Just as the Description Block could be used as input to a Walkthrough
SO0 also can the Design Block.

It is only when the design is known and validated that the work of
transcribing the design into the corresponding code should take place.

It is generally accepted that the easiest errors to locate and correct
are those that are introduced at the programming phase. The earlier
that an error is introduced into the expression of a problem, the wider

are its repercusions, and the harder and more expensive it 1is to
correct.

The life cycle described above effectively asks the implementor to
express his problem 3 times:

as narrative
as design
as code

)

This provides for up to 3 levels of Walkthroughs and should minimise

Page 10

’

Structured Programming System

the errors that are located at project integration time.

-

PE-T-513,

Page

REV 1

"

Structured Programming System PE-T-513, REV 1

4 Design Expression

)

4,1 General

A large number of Design Techniques/Languages are now available for
use, and many of these are used to some extent within the department.

Information is already available within the R&D (UK) Library on a

number of techniques and there are a number of additional books already

on order. At an introductory level the notes from a course entitled:
'Software Engineering - The Key to Quality Systems'

provide an overview of many of the techniques currently available.

A design may be expressed in any number of forms, for example:

pseudo language

decision tables/trees “
bleck charts

finite state diagrams

SADT charts

Warnier-Orr diagrams

Data Structure diagrams
ete,

At a general level, no one of these techniques can be said to be 'best’
for all design requirements. Usually a combination of a small number
of these techniques will be appropriate in solving a single problem. -

Different techniques may of course be better suited to different
problems.

The importance of ALL of these formal techniques is that they force the
designer to express a design in a formal fashion, as oposed to just
diving in to the implementation phase.

It is important that any design technique used should be documented for#%
the benefit of anyone not familiar with that technique.

When selecting a design technique, the following should be considered:

1. The environment in which it is to be used:

a) A technique suited to the analysis stage may not be well
suited to program design.

b) There does not need to be a correspondance between the
constructs provided by a design technique and those available
in the eventual implementation language.

c) The constructs provided by a design technique should be (or
be used) at a higher 1level than those available in the
implementation language. Most people have seen flowcharts in
which a box contains the statement 'a=10', this 1is not a
fault of the flowcharting technique but of the person using
it.

d) The technique should approach natural language as much asm%

Page 12

Structured Programming System PE-T-513, REV 1

possible (within the constraints imposed by the problem).
e) The representation chosen to express the design should be
such that the transformation to code is straightforward, and
@h not error-prone.

2. The mechanism used to express a design:

a) The process of creating a design must be simple.

b) It must be possible (and easy) to comprehend (and maintain)
the expression of a design.

c) It must be possible to circulate design information to
interested parties (even if these are spread over a number of
distributed sites).

d) Evolution of a design expression must be possible.

3. The number of design techniques used within a project should (if
possible) be kept to a minimum.

If any long term benefits are to be gained from the systematic wuse of

ny design technique then it is important that people be encouraged to
1aintain and evolve the original design expressed using that design
technique.

If the design 1is maintained to reflect any changes made to a program
then the design can take its rightful place in a project's
documentation.

It should never be necessary to re-create the design of a product after
it has been implemented for the purpose of producing documentation.

¢mf the program is located physically alongside the design then the
probability of their being in-line with one another 1is increased and
this fact can be used to help produce the much needed documentation.
This can be done most easily if the design technique used is text based
rather than diagram based.

4.2 STROMA

g@TROMA is a dialect of pseudo language that has been produced by the
‘oPS project.

After discussions with many of the people in the department, it
appeared that many people are using either a pseudo language dialect,
or simply expressing their design in English, by way of Structured
Comments.

The most commonly wused dialect of pseudo language used within the
department is known as R-Notation.

Unfortunately a number of personal mutations have been introduced into
this dialect now that it is being used with PL/I as an eventual
implementation language rather than Assembler.

In some extreme cases the correspondance between a PL/I program and its
R-Notation design is of a one-to-one nature.

@When English is used to express a design, ambiguity and impreciseness

Page 13

Structured Programming System PE-T-513, REV 1

can be introduced due to the manner in which people tend to express

themselves. Also any English description tends to contain only
sequential information.

The intention in designing STROMA was to encourage people to express
themselves in something akin to Structured English.

For this reason a number of structuring constructs have been defined,
but no rules have been created as to what should be written within any
of these constructs.

However, as with any design technique 1its success or failure as a
technique depends on the user.

Many learned persons, such as Edsger Dijkstra, have expressed the
opinion that all programs can be built from a combination of elements
known as Sequence, Selection and Iteration.

At a design 1level the requirement is rather that the constructs
available to the designer can be decomposed in a predictable manner

into these 3 elements as appropriate to the eventual implementation
language.

STROMA will be defined in the following sub-sections.
In the examples that appear in this section STROMA structuring words

are capitalised and constructs are formatted to emphasise their control
structure.

An example of its use is:

denote:

BEGIN
DO initialisation
REPEAT UNTIL no more input files

DO file processing

END-REPEAT
DO termination

END

initialisation:
BEGIN
set up parameter defaults
analyse parameters
SELECT
WHEN output file exists
allow choice of alternative file
ELSE output file does not exist
NULL
END-SELECT
END

file processing:
BEGIN
open input file
output file information line with RUNOFF control
read a line
REPEAT WHILE not end of file

Page 14

‘D

(4 4

Structured Programming System PE-T-513, REV 1

SELECT
WHEN title line
fh output title information line with RUNOFF control

WHEN start line of description or design
indicate that lines are to be output
WHEN end line of description or design
indicate that output to cease
ELSE ordinary line
output line if required
a hook table search could be done at this point
END-SELECT
read a line
END-REPEAT
close input file
END .

termination:
BEGIN
close files
Sh END

4,2.1 Labelling

Any construct may be labelled.

A label is any sequence of characters followed by a ':' and should
appear on a line on its own.

C e.q.

get next item:

The purpose of the label is to allow identification of a portion of the
design.

This identification is purely for identification purposes, except for
the case of labelling a portion of the design that has been invoked.

Programming Considerations:

or any label appearing in the design there should be a corresponding
label appearing in the code (within the limitations of the programming
language being used).

4,2.2 Invocation

At any point in the code it is possible to invocke a design unit that
appears elsewhere.
An invocation consists of the word 'DO' followed by a name.

quo
DO get next item

A name that is invoked should correspond to a label appearing in the

design unless it is the name of an external module.)
™t may be convenient to indicate that a design unit is defined

Page 15

Structured Programming System PE-T-513, REV .1

externally by including the word 'EXTERNAL'.

e.g ™

"DO EXTERNAL tnou

If additional information is to be supplied about the invocation then
this may follow the name; a ':', '(' or '[' may be used to separate
the name from such comments.

Programming Considerations:

The use of the invocation construct in the design does not necessarily
imply that a subroutine call will be implemented.

4.,2.3 Invoked Design Units

A section of the design that is invoked consists of a mandatory label,

followed by 'BEGIN', followed by a portion of design, followed byﬂ%
'END'.]

e.g.
get next item:
BEGIN
comment sequence
END

The word 'END' implicitly causes a return from the invoked unit to the
construct following the invocation.

~

4.,2.4 Sequence

A sequence of comments may appear at any 1level 1in the design, and
consists of one or more comments.
Each comment should be written on a new line.

e.g. =

set up parameter defaults .

Programming Considerations:
Design language statements should not normally correspond to a single
programming language statement.

b,2.5 Selection

The 'SELECT' construct provides the designer with a mechanism for
defining multiple choices. This construct has the following format:

SELECT

WHEN condition definition
comment sequence

WHEN condition definition)
comment sequence

Page 16

Structured Programming System PE-T-513, REV 1

® % 00 0 00 0000090 ® o o 0 0 00 0 0

ELSE condition definition

comment sequence
(™ END-SELECT

The 'ELSE' part of this statement is mandatory.

Its function 1is to ensure that the designer has given some thought to
the question of what happens to the conditions ¢that are often not
specified.

It may be the case that in practice the 'ELSE' part of the construct
often contains only an instruction to do nothing. (A special word 1is
introduced later for expressing this.)

Only one of the multiple choices is ever selected.

A condition definition may involve one or more conditions.

e.g.
SELECT
WHEN temperature>20
@m DO warm processing
WHEN temperature<5
DO cold processing
ELSE 5 <= temperature < 20
no action required
END-SELECT

Programming Considerations:

If a selection requires to be made between more than two choices then

it should be expressed as such in the design, even though the
ehimplementation language may restrict the implementor to a two way

choice.

4.2.6 Iteration

The 'REPEAT' construct provides the designer with a mechanism for
defining the control of a 1loop. This construct has the following
format :
@h REPEAT repetition definition
" comment sequence
END-REPEAT

The repetition definition must be one of:
WHILE condition definition
UNTIL condition definition
FOR control description

When the 'WHILE' option is used, the test involved is performed at the

start of the iteration. It is therefore possible that no iterations

may result from this form of the construct.

When the 'UNTIL' option is used, the test involved is performed at the

end of the iteration. It is therefore the case that at least one
(™iteration will always occur.

Page 17

Structured Programming System PE-T-513, REV .1

When the 'FOR' option is used, the wording of the 'control desqription'
should imply how the control is to be implemented. It is possible that
no iterations may result from this form of the construct. -

A repetition definition may involve one or more of the definition
clauses.

e.g.
REPEAT WHILE not end of file
DO file processing
END-REPEAT

REPEAT UNTIL end of file
DO file processing
END-REPEAT

REPEAT FOR each person on payroll
DO produce payslip
END-REPEAT “

4,2.7 Event Handling

The 'MONITOR' construct provides the designer with a mechanism to
define responses to events. These events may be either 'hard' or
'soft' events; 'thard' events being automatically detected, whereas
'soft' events have to be detected explicitly.

A single 'MONITOR' construct may be concerned with more than one event. <
This construct has the following format: ~

MONITOR condition list
comment sequence
if none of the conditions occur then
control passes to the end of the statement
ADMIT condition 1list
actions corresponding to these conditions
ADMIT condition list ﬁ%
actions corresponding to these conditions -

oooooo ® o e 0 000 80 0 a0 2o

END-MONITOR

Note that each condition being monitored must have a corresponding
'"ADMIT' clause.

When a 'soft' condition 1is being explicitly detected a special
construct 'BREAK' is used in conjunction with that condition name.

e.g.
MONITOR break-key
process file
ADMIT break-key
DO controlled shut-down
exit from program -
END-MONITOR

Page 18

Structured Programming System PE-T-513, REV 1

REPEAT UNTIL end of file
MONITOR end of tape
Fk read record from tape
SELECT
WHEN end of tape
BREAK end of tape
ELSE not end of tape
process record
END-SELECT
ADMIT end of tape
BEGIN
DO get next tape
END
END-MONITOR
END-REPEAT

Programming Considerations:

aXtreme care should be taken when implementing a 'MONITOR' construct.
.ach 'soft' event could require two 'GOTO' statements and each 'hard'
event could require one 'GOTO' statement.

4,2.8 Special Words

A number of special words have been defined to enable a number of

standard requirements to be expressed in uniform ways. These can each
occur as a comment.

'BREAK' normally causes a 'return' up one level of control.

Its other use is in the 'MONITOR' construct when wused in conjunction
Wwith the detection of a ‘'soft' event, when it causes control to be
passed to the corresponding 'ADMIT' clause.

'NEXT' is only meaningful in a 'REPEAT' construct. It causes the next
iteration to be commenced.

ULL' is used to indicate that no comment is present. This will
cypically be used in the 'ELSE' part of the 'SELECT' construct.

Page 19

Structured Programming System PE-T-513, REV .1

5 Project Libraries

All project work items are currently organised into project ufds for fﬁ

the purpose of handing a product over to SDI.

At this time there are few requirements as regards to the organisation
of such a ufd, other than that the command files supplied with the
product should take account of any internal organisation,

Different projects adopt different organisational arrangements for
their project work items for this handover.

The format of the ufd organisation during development does not always
match this structure. Frequently people favour the idea of working in

their own wufds and only move software into a project ufd for
integration and final testing.

It is, however, very important that all members of a project team and
any other interested parties be able to locate any project work item
with ease.

This can best be done if a project ufd and its associated structure is
defined for any project.

The 'project library' reflects the fact that a team of people work
together with the common objective of creating one product. In the
past one often saw several individuals going about their work in an
individual way and only coming together on the great day of
'integration'., It is not surprising that sometimes their separate
components did not match one another.

Nowadays we see the development process as more co-operative, people
will discuss and negotiate interfaces or functions, there is a sense of
collective responsibility for the whole product. The project ufd is
established to reinforce the team and answer their day to day need for
information.

With a project 'library' it is no longer necessary to rely on fallible
memory, hurredly written notes or second source rumours to understand
an interface or function. If the facts have been defined at all, they
Wwill be easily found within the 'library’'.

Some of the benefits to be gained from creating a project ufd in which
all work items are created/kept are as follows:

1. The total assets of a project are kept together and are available
to any interested party.

2. Appropriate backup and recovery procedures can be adopted for a
project as a whole.

3. Standard procedures can be created for product building that are
based on the organisation adopted.

4, A working space 1is set aside for a project and resources can be
more easily be assigned to a project.

5. File naming conventions can be established for a project and the
conformance to such standards is easily visible.

6. Any questions about a project should be resolvable by reference to

Page 20

'd

’ I3

Struciured Programming System PE-T-513, REV 1

the project ufd since all work items reside there.

@J. The project wufd represents a source of status information for all
project members and for management.

8. The project ufd provides an opportunity to resolve contention for
central project resources such as subroutine libraries.

No structure for a project ufd can be laid down arbitrarily. It can
only be said that whenever possible the project leader should create a
ufd structure or structures that permit project members to easily
fulfill their project responsibilities.

In deciding on a ufd structure the existence of the following should be
considered:

multiple product units within a large project
documentation
6& source files
binary files
command files
testing requirements
subroutine libraries

together with any other considerations specific to a particular
project.

gh.1 Project Catalogue

iThe Project Catalogue 1is a definitive 1list of the resources of a
yproject.

iBy maintaining a list, in a known place, of all source files, insert
Ifiles, and any other interesting material, that project clearly
|identifies its resources.

'Such a list could be used in conjunction with Project Specific CPL
@“tilities to perform project specific tasks regardless of the structure
iof the Project Library.

i For example, a CPL utility could be written to compile each file listed
!in the Project Catalogue using the compiler appropriate to the file's
isuffix. Such a utility could recognise that certain entries in the
tcatalogue (e.g. insert or design files) are not eligible for
icompilation.

iAn entry in the catalogue must consist of the full treename'of phe file
land any parameter options required/recognised by project utilities.

IA use of the Project Catalogue is described for the tool DENOTE (later
iin this document).

-

Page 21

Structured Programming System PE-T-513, REV .1

6 Walkthroughs

The Walkthrough was mentioned briefly in the section on the Lifecycle ™)
of a Routine. -
It was said there that at a Walkthrough

'the conceptualisation of the product is reviewed and validated’
and that the lifecycle described in that section effectively asks the
implementor to express his problem three times:

as narrative

as design

as code

thus providing for up to three levels of Walkthrough.

In actual fact those three instances of Walkthfoughs in a Routine's
Lifecycle are but a few of the possible instances when a Walkthrough
can be usefully held during a Project's Lifecycle.

In any project anyone with a particular problem tends to discuss a
problem area at great length with either the Project Leader and/or a’ﬁ%
collegue. The process of explaining a problem can often make a
solution visible, and/or the other person may see a solution or provide
useful ideas.

However, it is frequently the case that large areas of a product are

not seen by anyone other than their originators simply because there
appear to be NO problems in these areas.

In the situation where Walkthroughs are employed then the whole project
will be examined. Obviously some areas will still be considered to be
straightforward and therefore receive 1less attention than known -
'problem' areas, but the whole product will be reviewed.

As a result of this approach a situation should develop where the
project team are satisfied as regards to the correctness of the design
(and the code), the accuracy and style of the implementation, the

exhaustiveness of testing, and last but by no means least the quality
of the documentation.

A number of things can be achieved as the result of a Waklthrough;u%
these include some or all of the following:

1. The introduction of a work item to the project team by its
originator - after a successful Walkthrough the project
effectively takes collective responsibility for that work item.

2. The review of the development of an existing work item.

3. To catech any errors (in code and/or design) as early as possible
in a project with a view to minimising their effect and the
subsequent cost of correcting them.

Typical of the kind of errors that can be detected and/or
prevented are:
those arising out of interface problems/incompatibilities
missing functions
misinterpreted functions

Page 22

Structured Programming System PE-T-513, REV 1

To involye project members in as much of the project as possible
and to 1increase their awareness of the project's state at any

€n time.

5. To instill in project members a 'total' responsibility for a
'whole' product.

To monitor progress.:

6

7 To obtain advice from any 'experts' invited to the Walkthrough.
8. To monitor the project implementation style.

9 To verify that documentation reflects the state of the project.

10. To facilitate the exchange of information through the project
members.

1f Walkthroughs are to be used then they should be instituted as early
in the project's 1lifecycle as possible and be scheduled to take place
at a number of specific points in that lifecycle.

A Walkthrough should be held at the beginning of a project to discuss
the Marketing Requirements and/or Base Document of the project and

ensure that all project members wunderstand what is required to be
produced.

e next step is usually to produce a Functional Specification. This
2rucial document can be reviewed section by section in Walkthrough
style discussions. When that specification is agreed, the design work
can begin in earnest.

If the proposed lifecycle for a routine is being followed, the first
job is to write Description Blocks for the main routines.

These may be keyed in and printed via DENOTE or just left hand written,
since, at this stage, details are still being tied down.

A Walkthrough can then be held on the Description Blocks established
‘for the planned routines. This makes sure that the embryo routines are
being conceived along the right 1lines before detailed design is
committed.

The next 1level of Walkthrough c¢an be held on the Design Blocks
corresponding to routines. At this time it will be possible to see the
level of complexity included in each routine and recognise the shape of
the proposed product.

The information available at this stage can lead to a re-evaluation of
projected timescales. It should also allow a judgement to be made as

to which routines will receive further Walkthroughs when they have been
coded.

Additional Walkthroughs may be held on the code of various routines.

Often routines will be selected on the basis of the complexity of their

design. There 1is, however, no harm in also selecting a number of
ﬁm?outines at random for examination at a Walkthrough.

Page 23

Structured Programming System PE-T-513, REV .1

If the earlier Walkthroughs served their purpose correctly few problems
should be detected at this stage.

)

In addition to the above Walkthroughs held during the evolution of the
routines that will eventually make up a product, Walkthroughs can also
be held during the testing phase of development. The expression
'testing phase' 1is used here to encompass all activities associated
with testing; thus including planning, test generation and result
prediction/checking.

It may well be the case that in spite of the Walkthroughs held so far,
different project members may have different ideas of what results are
expected from a particular test set, and these can then be resolved.

Walkthroughs can also be held to guide the production of documentation,

to review its quality and accuracy. The Functional Specification
should have been examined early on in the Project's Lifecycle. The
Description and Design Blocks for routines should also have been
validated and combined into a Design Specification or Design Notebook,
using DENOTE or some similar tool. A Walkthrough can now be held to’éﬁ
consider any documentation produced for publication.

It can thus be seen that the Walkthrough can play a significant part in

a project's development cycle when it's use is encouraged.

It is also important that the use of this tool (for it is a tool, 1like
any of the others described in this document) be planned and scheduled
into a Project Plan. 1If too few are held, then any (or perhaps all)
benefits may be 1lost; if too many are held, then the project could
become one long meeting and little work will be accomplished. “
The correct balance between Walkthroughs and work is important and can -
only be judged by experiance.

¢
If Walkthroughs are used then the following must be remembered if they
are to stand a chance of being successful:

1. The work items of each project member must be seen to be subject
to the same reviewing process - no one should be exempt.

2. The Walkthrough 1is not used when things go wrong in order to find‘f%
a scape-goat for any project slippage.

3. Project members accept the usefulness of these sessions and
contribute to them.

Page 24

Structured Programming System PE-T-513, REV 1

i7 TEMPLATE

f EMPLATE is a wutility which builds the outline framework of the
- tandard SPS file construction, in a format appropriate to the
irequested file type.

iT.1 Function

lTEﬂPLATE 1s 1intended to create a shell in which the final file can be
ibuilt. To this end the following will be included in the framework:

1. A Copyright Block which includes the file name, location of file,
author, function and date.

3
|
|
12, A Title Line giving the routine name and function.

1 3. A History Block with the first entry being information on the date
é& when the template was constructed.

4 A Description Block.
i5. A Design Block.
6

| A Code Block, provided that the file language type is not design
i or that the penultimate component of the file name is not .INS.
iUse of TEMPLATE allows the programmer to set up 'stub' routines easily

hen using a 'top-down' approach to development. It also ensures that
ia module conforms to both PRIME and SPS file formats.

17T.2 User Interface

ITEMPLATE is invoked by:

e

iwhere base.<{suffix> is the name of the file that is to be created.

iIf the name of the file specified is ‘'base' then ‘'=<{suffix>' must be
ispecified as a control argument. If the name of the file specified is
i 'base.<suffix>' then '-<suffix>' must not be specified as a control
|argument .

TEMPLATE basel.<suffix>][control arguments]

iThe control arguments may be chosen from the following in any order.

| -PATH <pathname> If specified this must be followed by the
| pathname of the ufd in which the file is
i to be created.

f Default pathname is the current attached
]
[

UFD.
i -NO_QUERY, -NQ If specified this will result in the
L named file overwriting any file of that

Page 25

Structured Programming System PE-T-513, REV .1

RO

name in the specified UFD, without
verification request.

-<suffix> If omitted .<{suffix> must be specified.
A null suffix will not be accepted.
This parameter may be one of the strings:
'PL1' 'PLP' 'PLIG' 'FTN' 'FT7T7' 'PMA'
'COBOL ' 'PASCAL' 'DES' 'BASIC' 'CPL"
'LISP' 'EMACS!
and indicates that the file ¢to be
produced should be of the corresponding

type.
i TEMPLATE will then ask for additional information with the following
| prompts: . .
f FUNCTION: Mandatory. A one line description of the
i function of the routine.
| AUTHOR: Mandatory.
! DESCRIPTION PROFILE: An option which allows you to insert the
i contents of a specific file into your
i Description Block. (If no file to be
i included type <returnd>).
i This can be wused to include project
i specifiec information within all project
: modules.
i CODE PROFILE: This prompt will not appear if a design
i file or an insert file 1is being built.
I This is an option which allows you to
i insert the contents of a specific file
i into your code block. (If no file is to
i be included type <return>.)
i7.3 Processing

I TEMPLATE creates a file which contains the following:

i1,
2.

W
.

I=

A Copyright Block conforming to PRIME standards.
A Title Line consisting of the routine name and function.

A History Block with an entry showing the date the template was
constructed.

A Description Block. If a description profile has been provided
then the contents of this file will be inserted into this part of
the file. If no description profile 1is provided then a line
saying 'description to be inserted ' is inserted here.

A Design Block, which provides the basis for a STROMA based

Page 25

-~

Structured Programming System PE-T-513, REV 1

————— ’.% —-—

design.

A Code Block, this block will not appear in a design file or an
insert file. If a code profile has been provided then the
contents of this file will be inserted into this part of Template.
If the 1language type 1is PL/I, this block will additionally
contain, a label, a dummy Procedure declaration and an end.

1The following table links the format of the contents of a file to its
icorresponding suffix:

— e e _/% _—— s —————

contents suffix
. PL]
PL/IG .PL1G
PL/P . PLP
PMA . PMA
COBOL .COBOL
Fortran LFTN
Fortran 77 FT7
Pascal .PASCAL
Basic .BASIC
Design .DES
CPL .CPL
LISP .LISP

EMACS Extension File.EMACS

iThe formats of each of these file types are described in a series of
ppendices.

,.hese are very 1important as particular character sequences are

lgenerated for a given file type.

Page 27

Structured Programming System PE-T-513, REV .1

8 REFORM

REFORM is a REpresentation FORMatter for use on files containing STROMA
constructs embedded within Design Blocks.

8.1 Funection

REFORM is intended to speed STROMA design entry and verification
through three functions:

1. Elementary syntax checking of STROMA constructs.

2. Reformatting the STROMA design for increased readability through
uniform indentation conventions.

3. Simple consistency checking over the design, flagging the missing

design of invoked units and the inclusion of wuninvoked design
units.

Use of REFORM allows the programmer to enter STROMA design quickly,
without regard to format, and yet still have readable designs whose
physical formats reflect their 1logical structures. STROMA designs
which have already been indented by REFORM are passed through this
formatter without change, allowing easy editing of existing designs.

8.2 User Interface -

REFORM is invoked by:
REFORM input [output] [control arguments]

Where 'input' is the treename of the source file to be reformated and
'output' is the treename of the result file, if omitted the source file
will be replaced. If errors are detected, the input file will not be

modified and the output will be left in a temporary file whose name .
Wwill be given to the user in an error message. 0

The control arguments may be chosen from the following in any order:

-NO_UPPER_CASE, -NUC Inhibits the conversion of keywords to
upper case.

-UPPER_CASE_LABELS, -UCL Causes labels to be converted to upper
case.

(Default - 1labels output in the form
read.)

Page 28

http://fil.es

Structured Programming System , PE-T-513, REV 1

-NO_QUERY, -NQ Suppresses verification request if
'output' already exists or 1is omitted.
@w (Default - verification will be

requested.)

Ignored if no treenames have been
specified, the user needs help.

The filename selected via the input treename must conform to the
standard naming convention adopted by the S.P.S. package. This limits

REFORM to only processing files whose language format 1is indicated
using a file suffix.

The recognised suffixes are:

contents suffix
PL/T .PLT
PL/IG .PL1G
PL/P .PLP
PMA . PMA
gh COBOL .COBOL
: Fortran LFTN
Fortran 77 FTT
Pascal .PASCAL
i Basic .BASIC
Design .DES
CPL .CPL

H LISP LLISP
i EMACS Extension File.EMACS

ehln addition to the above, REFORM accepts a null suffix as indicating a
Design file.

If an output file is specified it must conform to the standard and be
of the same language type as the input file.

The formats of each of these file types are described in a series of
appendices. These are very important as particular character sequences
are recognised/generated for a given file ¢type, .and particular
sharacter sequences are discarded. If the described formats are not
used it is possible that a file may not be formatted.

8.3 Processing

8.3.1 Source format

The design blocks present in the input file must adhere to the 1layout
requirement of +the 1language contained in the file, together with the
further restrictions imposed by S.P.S. (described in the appendices).

Abbreviations have been defined for the STROMA keywords as follows:

.-

Page 29

Structured Programming System PE-T-513, REV 1

ke yword abbreviation
REPEAT REP
END-REPEAT ER

BREAK BRK

SELECT SEL
END-SELECT ES

MONITOR MON
END-MONITOR EM

ADMIT ADM

ELSE OTHERWISE

These are recognised on input as being equivalent to the corresponding
keyword and converted to the corresponding keyword.

The actual design expressed in STROMA has only two simple, restrictions
other than syntactic restrictions, applied to it.

1.

2.

All STROMA keywords, except for WHILE and UNTIL, must be the first
word on a line in order for REFORM to recognise them. The

keywords FOR, WHILE and UNTIL are considered to be extensions of
REPEAT.

A STROMA construct must not span more than one design block.

Congequently the STROMA contained in a design block can be free format
subject to the two restrictions mentioned above.

8.3.2

Output format

REFORM performs simple indentation together with some text manipulation
on the STROMA source. The indentation performed is fixed but the text
manipulation is selected via the command line keywords.

The indentation rules applied are:

1.

= oW N

Begin construct and end construct keywords are aligned, in-=

addition the keywords identifying subordinate WHEN and ELSE

clauses of the SELECT construct are aligned with the SELECT
keyword.

Text within a construct is indented one level (three spaces).
Blank lines are maintained, none are generated.

Lines commencing with a fullstop ('.') are left unchanged as these
may represent Runoff commands embedded in the Design.

The text manipulation performed is the forcing of recognised keywords
or labels to uppercase, if required, and the detection of '_' as the

first

character on a 1line. The single underscore character is

translated into seven underscores to cause the 1line to be indented
further., This c¢an be wused as a means of indicating text that is

Page 30

&trucéured Programming System PE-T-513, REV 1

subordinate to, or a continuation of, the preceding line.

CM:.3.3 Checking

8.3.3.1 Syntax Checking

Syntax checking is performed on each design block in isolation with
END-DESIGN as the c¢losing keyword of the grammar. The syntax rules
applied are those described informally in the section on STROMA., If a
syntax error is detected in a design block then the rest of that design
block is not parsed, it is just copied to the output file. REFORM
restarts parsing design on the next design block encountered.

Syntax errors are reported with the following error message format:

@“ Error at line 'line no.' in design 'clause' starting on line 'line
no.' contains an unexpected 'keyword' at line 'line no.'.

This indicates both the current construct and the illegal keyword
detected within it.

8.3.3.2 Consistency Checking

EFORM performs simple consistancy checking over the design it
processes. The checking is only performed on syntactically correct
design.

The objective of the consistancy checking is to notify the user of

REFORM when no design exists within the file for an invoked unit and/or

when a design exists for an invokable unit but it 1is not referenced

within the rest of the design. This results in two benefits: one,

complete designs can be detected; and two, attention can be drawn to

ﬁw}nvoked units whose design is external to the design being processed.
Therefore a complete and error free design when processed by REFORM
will result in REFORM only notifying the wuser of external units
referenced within the design. This facility can be used to indicate
PRIMOS routines referenced in a design. Within the design they can be
included as invoked units but of course no corresponding design will be
present. When the design is processed by REFORM the routines present
Wwill be flagged as invoked routines with no design.

The consistancy checking is performed by REFORM building two internal
tables, one of invoked routine names and the other of named design
units. After formatting the design contained in a file, provided no
errors were detected, these two tables are compared and any
discrepancies are reported. The text following the keyword DO upto a
':* or '(' or '[' character is used as the name of an invoked routine,
and the label preceding an invoked design unit as the name of a design
unit.

Page . 31

Structured Programming System ‘ PE-T-513, REV 1

9 RESTATE

RESTATE is a REpreSenTATion convErter. ™

9.1 Function

RESTATE converts a file containing Title Lines, Description Blocks and

Design Blocks into a comment form suitable for the intended
implementation language.

This relieves the user of the tedious task of converting the contents

of a design file 1into a form compatible with the commenting
requirements of the implementation language.

As a by-product a file containing comments in any of the recognised
languages may be converted to a file of another type. (Note that
RESTATE does not change any code statements and will therefore not
convert a source program from one language to another.))

g.2 User Interfaée

RESTATE is invoked by:
RESTATE input [output] [control arguments]

Where 'input' is the treename of the source file to be input for™
comment conversion, and 'output' is the treename of the file to be
produced. If ‘'output' 1is omitted and no control argument is supplied
to specify the output file type, then the input file will be replaced.
If errors are detected, the input file will not be modified and the
output will be left in a temporary file whose name will be given to the
user in an error message.

If no errors are detected and the input file is not being overwritten
then the input file will be deleted.

The program will only perform its conversion between files whose name:ﬁ
include recognised suffixes.

The control arguments may be chosen from the following in any order:

-NO_QUERY, -NQ Suppresses verification request if
'output' already exists or is omitted.
Also suppresses verification request on
possible deletion of input file.
(Default - verification will be
requested.)

-XXX This parameter may be one of the strings:
'PL1' 'PLP' 'PLIG' 'FTN' 'FT7T7' 'PMA!
'COBOL' 'PASCAL' 'DES' 'BASIC® 'CPL"’
'LISP' 'EMACS' -

and indicates that the file to be

Page 32

Strucfured Programming System PE-T-513, REV 1

produced should have a similar name to
that of the input, but with the last

ﬁm suffix replaced by 'xxx'.

-

If this control argument 1is specified
then the output file should not be
specified.

9.3 Processing

9.3.1 Input File Processing

This tool will only process a file with an .acceptable suffix.

The following table links the format of the contents of a file to its
corresponding suffix:

contents suffix
LPL1
PL/IG .PL1G
PL/P .PLP
PMA . PMA
COBOL .COBOL
Fortran .FTN
Fortran 77 FTT
@m Pascal . PASCAL
. Basic .BASIC
Design .DES
CPL .CPL
LISP .LISP

EMACS Extension File.EMACS

The formats of each of these file types are described in a series of
appendices.

These are very important as particular character sequences are
recognised for a given file type, and particular character sequences
are discarded. If the described formats are not used it 1is possible
that an incorrect conversion will be performed.

9.3.2 Output File Processing

This tool will only process a file with an acceptable suffix.

The following table 1links the format of the contents of a file to its
corresponding suffix:

contents suffix
.PL1
PL/IG .PL1G
PL/P .PLP
= PMA .PMA

Page 33

Structured Programming System PE-T-513, REV'1

COBOL .COBOL

Fortran LFTN

Fortran 77 FT7 ﬁﬁ
Pascal . PASCAL .
Basic .BASIC

Design .DES

CPL .CPL

LISP .LISP

EMACS Extension File.EMACS

The formats of each of these file types are described in a series of
appendices.

These are very 1important as particular character sequences are
generated for a given file type. '

When the suffix of the input file is not 'DES' the comment structure of
the input file is maintained in the output file.

When the suffix of the input file is 'DES' then the following comment ™)
structure is created, as appropriate to the commenting conventions -
required for the file format: '

Title Line - a single line comment
Description Block - a block comment
Design Block - a block comment

Start Code Line - a single line comment
End Code Line - a single line comment

Page 34

Structured Programming System PE-T-513, REV 1

10 INFORM

@@INFORM is an INstruction FORMatter for use with PL/P programs.

10,1 Function

INFORM is intended to speed PL/P program entry and development through
two functions:

1. Pre-compilation syntax checking for matching parentheses, ends,
quotes, if-then-else constructs, and comment delimiters.

2. Reformatting the program text for increased readability through
uniform spacing and indentation conventions.

Use of INFORM allows the programmer to enter PL/P programs quickly,
without regard to format, and yet still have readable programs whose
physical formats reflect their logical structures. Programs which have
already been 1indented by INFORM are passed through the formatter
without change, allowing easy editing of existing programs.

10.2 User Interface

INFORM is invoked by:
o INFORM input [output] [control arguments]

Where 'input' is the treename of the source file to be indented and
'output' is the treename of the result file, if omitted the source file
will be replaced. If errors are detected, the input file will not be
modified and the output will be left in a temporary file whose name
will be given to the user in an error message.

The control arguments may be chosen from the following in any order:

@h -LMARGIN xx, -LM xx Sets the 1indentation for the outermost
level of nesting to be 'xx! spaces
(default 8, range: 1 to right margin
minus 39).

~-RMARGIN xx, -RM xx Sets the column number beyond which
non-comment , non-string text will not be
placed to be 'xx' (default 98, the size
~of the PL/P 1listing without '-offset’',
range: left margin + 39 to 256).

~-COMMENT COL xx, -CC xx Sets the column to which remark comments

: - will be indented to be 'xx' (default 50,
range: left margin + 14 to right margin
- 25)0

& -INDENT xx, -IND xx Sets the number of spaces to indent for

Page 35

Structured Programming System PE-T-513, REV 1

each logical level of nesting to be 'xx'
(default 3).

“

-NO_FILL, -NF Causes format to maintain the line -

structure of the 1input, except extra
lines will be added as necessary for line
breaking. (default 'fill', 1line breaks
within input statements will be ignored,
except blank lines are maintained).

-NO_QUERY, -NQ Suppresses verification request if

'‘output! already exists or is omitted
(default verification will be requested).

10.3 Processing

10.3.1 Limitations

INFORM cannot process a statement longer than 8191 characters or 1000
lexical items, excluding labels and preceding header comments (this
limitation does not apply to declaration statements). All the header
comments preceding a statement may not contain more than 8191

characters. No line of text, after indentation, may be longer than 256
characters.

10.3.2 Character-level Processing

INFORM deletes unnecessary spaces within lines and ensures that '&',
1=!, l/v’ ' !’ v*v’ '<v, v>|, l"=7, v“>v, r‘*(r, 1 " !**l’ 1<=|, 1>=l,
and '->' are both preceded and followed by a blank, that ',' and ')°'
are followed by a blank when that makes sense (e.g., '))', not '))'),
that '(' and '"' are preceded by a blank when that makes sense, and
that '+' and '-' are always preceded by a blank and are followed by a
blank when they are not unary. Needless to say, this processing does
NOT occur within comments and character string constants.

10.3.3 Comment Processing

INFORM recognizes two kinds of comments: remark comments, which are
those preceded on the input line by one or more non-blank characters,
and header comments, which are those on a line by themselves.

Remark comments are aligned to the column specified by the '-ce!
commagd line parameter, or 3 columns to the right of the last text on
the line, whichever is larger. Text following the remark is placed on
a new line.

Header comments are left-justified and a blank line is inserted before
and after, if one is not already present.

Page 36

=

“

-

Structured Programming System . PE-T-513, REV 1

INFORM manipulates only the spaces preceding the comment text, all
gwother internal spaces are preserved. For both header and remark

comments spaces following the start comment symbol '/¥*' are compressed
to one space.

Thus:

/¥ A line of text.

is transformed into
/¥ A line of text.

Spaces following the text of a comment and the close comment symbol
'#/' are unaltered, except that if no spaces are present one is

inserted. A close comment symbol on a line alone is aligned with its
corresponding start symbol.

(™For comment continuation 1lines INFORM attempts to perform simple

" indentation. Continuation line of remark comments are left justified.
Thus:

Cesesaneas ../* The first line of remark
the second line and now
the last line ¥/

becomes

¢ ¥

teeseeenne The first line of a remark
the second line and now

the last line */

A similar approach is taken to header comments, and in the simple case
left justified text is produced. However as some spaces at the start
of lines may have been introduced by the comment's author an attempt is
made to preserve them. The approach taken is that as three spaces are
necessary to give left justified text, INFORM ensures that at least

Gmthree are present. Three or less spaces on a line are forced to three
spaces, more than three spaces are left unaltered.

The following is an example of INFORMs handling of header comments:

/* A header comment with
continuation lines, preceded by a varying
number of spaces. (1 space becomes 3)
A continuation line, (2 spaces become 3)
another line (3 spaces remain as 3)
penultimate line (4 spaces remain as 1)
last line (6 spaces remain as 6) */

becomes

/* A header comment with
- continuation lines, preceded by a varying

Page 37

Structured Programming System PE-T-513, REV-1

number of spaces. (1 space becomes 3)
A continuation line, (2 spaces become 3)
another line (3 spaces remain as 3)
penultimate line (4 spaces remain as 4)
last line (6 spaces remain as 6) */

10.3.4 Label Processing

Each label (with its associated remark comment, if any) is placed on a
separate line. The 1label is 1left-justified, regardless of current
indentation level, for ease of location when scanning the text.

10.3.5 Statement Processing

Each statement begins a new 1line in the indented text, with the
starting column determined as described below by its relationship with
'do', 'proc', 'begin', 'select', 'end', and 'if-then-else' statements.
If the statement after indentation is larger than the right margin will
allow on a single 1line, INFORM attempts to break the 1line at a
delimiter or, failing that, just before the overflowing string,
identifier, or number. If a single string or identifier is too large
to fit between the indented margin and the right margin, the right
margin is ignored (as it is for comments). The rest of the text will
continue on the next line indented an additional 3 increments past the
current logical nesting level.

Text contained in ‘'proc', 'begin', 'do', and 'select' groups (along
with the 'proe', but not including the other 3 statements) is indented
one increment past the surrounding text; ‘'end' statements are aligned
with the rest of the group they close and cause the following statement
to be 'outdented' one increment.

The 'then' clause of an 'if' statement is placed on a separate line and

aligned with the 'if' (a 'do', 'begin', or 'select' group in a ‘'then'
clause is indent one increment past the 'then'); similarly, if
present, the 'else' is aligned to the 1level of the 'if' (a ‘'do',
‘begin', or 'select' group in an ‘'else' clause 1is indented one

increment past the 'else' level).

The 'when' and 'otherwise' statements of a 'select' statement are
aligned with their controlling 'select'. The contained statement is
indented one increment on a seperate line.

10.3.6 Declaration and ‘%staﬁement' Processing

The first line is left-justified and subsequent lines, unless resulting
from a broken line, are indented 4 spaces if 'del' was wused, 9 for
'Yreplace' constructs, and 8 if 'declare' was the keyword, so that the
identifiers will 1line up. No special processing occurs within
parentheses in a declaration statement. The text is passed directly
through to the output, subject to line breaking and the appropriate

Page 38

Structured Programming System PE-T-513, REV 1

indentation. At parenthesis level 0, however, two functions occur:

ﬁh1.

‘Each comma results in a new line, enforcing the 'one identifier

per line' constraint of structured coding (which allows one to
scan for the declaration of an identifier more easily).

Structures are indented one increment for each level greater than

Page 39

Structured Programming System PE-T-513, REV -1

11 Warnier Diagrams

One technique that it is felt can be used more and more in the future ™
is that known as the Warnier or the Warnier/Orr System.

This technique is particularly useful as it can be used to express both

the data and the 1logic flow within a system, without significantly
constraining a design.

Unfortunately where these are used the information is rarely mainta@ned
and is frequently discarded. In order to obtain the best possible

return from the wuse of this technique a machine interface must be
constructed.

Further information on this technique can be obtained from the book:
Structured Systems Development

available in the R&D (UK) Library,

or from John Howell

™

11.1 REWARD

A tool is required to facilitate the inputing of Warnier diagram
information, layout the information and output sections of the design.

This tool has not been implemented, nor has its required functionality
been determined.

=

Page 40

Structured Programming System PE-T-513, REV 1

12 SDL

SDL (Software Design Language) is a tool to aid in designing and
documenting a program or system of programs.

This is described in PE-T-462.
This package does not appear to encourage/allow the design and the code

of a program to exist in the same file.

It also requires a number of control commands to be included within the
design.

The software is available on the Bedford machine as X.SDL.
Instructions for using it are available in PE-T-462.

[

-

Page 41

Structured Programming System PE-T-513, REV-1

13 DENOTE

13.1 Function

DENOTE - the DEsign NOTEbook builder - is a wutility that has been
designed to facilitate the production of a piece of PRIME Internal
project documentation, hereafter referred to as the Design Notebook.

The purpose of DENOTE is to extract Description Blocks and/or Design
Blocks from files in a suitable format, and to produce an amalgam of

these blocks, together with Runoff control commands for subsequent
input to Runoff.

The existence of this tool makes 1t very simple ¢to produce an
up-to-date document at any stage of a project's life cycle from which
an assessment can be made of the state of the project. M%
It should be noted that it is essential that some ground rules be
established from day 1 as regards to the manner in which Description
Blocks and Design Blocks are to be created, since this will affect the
subsequent appearance of the Design Notebook. Any need to perform
substantial editing of these blocks will detract from the ease with
which the Design Notebook can be produced. It is also important that
the contents of these blocks be considered at a project level.

13.2 User Interface

DENOTE is invoked by:
DENOTE input output [control arguments]

Where 'input' is the treename of the source file from which information
is normally (see ~LIST option) extracted, and 'output' is the treename
of the file to be produced. If either of these names are omitted theﬁ%

program will request that these names be provided before it will .
continue.

'Input' may in fact be a wildcarded name, thus causing the program to
perform its extraction from a number of files. The program will only

perform information extraction from files whose names include a
recognised suffix.

The control arguments may be chosen from the following in any order:

-LIST, -LI If this 1is specified, 'input' is
constrained to be a simple (not
wildcarded) treename.

'Input' must then contain a 1list of
treenames (optionally wildecarded) from
which information is to be extracted.

This is a specific wuse of a Project-

Page 42

Structured Programming System

-DESCRIPTION, -DSC

-DESIGN, -DGN

-ADJUST, -ADJ

-NO_QUERY, -NQ

fh -WIDTH x, -W x

-BLANK x, -BL x

PE-T-513, REV 1

Catalogue, described earlier.

T?is option facilitates the production

of:

1. a partial Design Notebook

2. an ordered Design Notebook

3. a Design Notebook when the filenames
to be specified cannot easily be

expressed by a single wildecarded
name

If this 1is specified, only Description
Blocks will be extracted from the inputs.
If neither -DESCRIPTION nor -DESIGN are
supplied as control arguments then both
Description Blocks and Design Blocks will
be extracted.

If this is specified, only Design Blocks
will be extracted from the inputs.

If neither -DESCRIPTION nor -DESIGN are
supplied as control arguments then both
Description Blocks and Design Blocks will
be extracted.

If this 1is specified 'output' will be a
Runoff compatible file produced in
'adjust' mode.

If this 1is not specified (default)
'output' will be a Runoff compatible file
produced in 'no fill' mode.

If this is specified and 'output' already
exists then the program will overwrite
the file without requesting permission to
do so.

If this is specified then a line width of
tx! is created in the output file,
otherwise a line width of 85 is
generated.

'x' is required to be greater than 14 and
to not exceed 170.

If this is specified then 'x' should be a
charcter that will be created and used as

. the Runoff 'required' blank character

-INFORM_SPLIT, -IS

when in 'ADJUST' mode.
If this is not specified the character
'&' is used.

If this 1is specified then DENOTE will

report any input lines that it has ¢to
split when not in 'ADJUST' mode.

Page 43

Structured Programming System PE-T-513, REV-1

| -NO MESSAGE, -NM If this is specified warning messages are
- output to a temporary file instead of to
‘the screen.

13.3 Processing

113.3.1 Project Catalogue Processing

iDENOTE recognises the following types of entries in a Project
| Catalogue:

1. Runoff entry.
This has the format:
RUNOFF <Runoff command>
For further details see later in this document.

2. File entry.
This has the format:

treename [control arguments]

The control arguments recognised by DENOTE are:

-NO_BOOK This indicates that there 1is to be no
entry in the Design Notebook for the
indicated file

Any further control arguments are assumed to relate to project
utilities and are ignored by DENOTE.

13.3.2 Input File Processing

This tool will only extract information from a file with an acceptable
suffix. Since "the extraction method is linked to this suffix it is

important that the routine format selected corresponds to the file
suffix.

The following table 1links the format of the contents of a file to i.ts,‘ﬁ
corresponding suffix:

contents suffix
LPL1

PL/IG .PL1G
PL/P .PLP
PMA . PMA
COBOL .COBOL
Fortran . .FTN
Fortran 77 CFTT7
Pascal . PASCAL

i Basic .BASIC
Design .DES
CPL .CPL

]

E LISP LLISP <y

EMACS Extension File.EMACS

Page oy

Structured Programming System PE-T-513, REV 1

The formats of each of these file types are described in a series of
ppendices.

These are very important as particular character sequences are
recognised for a given file type, and particular character sequences

are discarded. If the described formats are not used it is possible

that information could be discarded by DENOTE.

At the level of an individual file the only processing performed is to
cause the outputting of its treename in a hyphenated box within the
main part of the document and the generation of a first-level title in
the Table of Contents..

13.3.3 Title Processing

The normal format of a 'TITLE' line is:
' TITLE: <name>
as defined in the section on Routine Format.

The output processing performed specific to a 'TITLE' line is to cause
the outputting of the name in an asterisked box (on a new page if
appropriate) within the main part of the document and the generation of
a second-level title in the Table of Contents.

»If a Description Block or a Design Block is being processed when the
'TITLE' line is met then that processing is terminated.

Since it is accepted that a user may require more than 2 1levels of
titleing in a Table of Contents some additional forms of the 'TITLE'
line are accepted, as follows:

TITLE-D: <name>
Causes the title-level to be increased by 1 before outputting
the title to the Table of Contents.
@“ If the simple 'TITLE' line is used after this c¢ommand then
that title is output at the level which is then current.

TITLE=U:
Causes the title-level to be decremented by 1. .The
title-level is never decremented past 2.

TITLE<-U: <name>

Causes the title-level ¢to be decremented by 1 before
outputting the title to the Table of Contents.

Page us5

Structured Programming System PE-T-513, REV'1

13.3.4 Description Processing

The normal format of a Description Block is: fﬁ

START-DESCRIPTION: [<name>]
block of text
END-DESCRIPTION

as defined in the section on Routine Format.

If the start of a Deseription Block 1is 1located and it is to be
extracted then commands are generated to ensure that at least 10 1lines
will fit on the current page.
The generation of the heading:

DESCRIPTION: [<name>]
is then caused (note that in this case 'name' is optional). The lines .
of the block are then passed across to the output file.

When DENOTE is not in 'ADJUST' mode the only processing performed on ™
these lines relates to their length. If the length of a line exceeds
the line width then DENOTE attempts to split the contents of the 1line
in a reasonable manner (without this, Runoff would arbitrarily split
the line). Any line splitting is reported if this is requested.

When DENOTE is in 'ADJUST' mode then it additionally analyses the
contents of each 1line to determine. whether any suplementary Runoff
commands should be included to generate a layout consistent with that
input. At a simple 1level this consists of generating commands toﬁﬁ
control indentation and spacing.

At a further level is the need for the inclusion of wmandatory spaces
when a tabular 1layout is required and the need to cause line breaking
to be performed without including blank lines. Each of these tasks,
require some indication 1in the text of the user's requirement. The
character ascii-200 has been chosen for each of these requirements and
must be included in the Description Block by the user to obtain the
desired effect. ’

This character was chosen because it is not printed by the spooler. Itﬁ%
cag bg obtained on many terminals by the character combination control
an 1 1.

The presence of ascii-200 prefixing a group of spaces causes the
'required! space character to be generated for each of these spaces,
thus causing Runoff to force the correct number of spaces.

The presence of ascii-200 at the end of a line causes a line break
command to be generated.

13.3.5 Design Processing

The normal format of a Design block is:
START-DESIGN: [<name>]

block of text '
END-DESIGN | . ‘m§

Page 46

Strucﬁured Programming System PE-T-513, REV 1

As defined in the section on Routine Format.
€2f the start of a Design Block is located and it is to be extracted

then commands are generated to ensure that at least 10 lines will fit
on the current page.

The generation of the heading:
DESIGN: [<name>]

is then caused (note that in this case 'name' is optional).

The lines of the block are then passed across .to the output file.

.When DENOTE is not in 'ADJUST' mode the only procesing perfomed on
these lines relates to their length. If the length of a line exceeds
the line width then DENOTE attempts to split the contents of the 1line
in a2 reasonable manner (without this, Runoff would arbitrarily split
the line). Any line splitting is reported if this is requested.

When DENOTE is in 'ADJUST' mode each line is output in such a way as to

appear on a new line with appropriate indentation. There 1is no need
for the inclusion of special characters.

13.3.6 Runoff Command Embedding by the User

The user of DENOTE may wish to cause additional Runoff commands to be
«fed through to the output file for some purpose.
fhis can be done in two ways.

Runoff commands may be embedded in the Description Blocks and Design
Blocks. In this case the '.' prefixing the command must be the first

character on a line, after any comment symbol required by the file
format.

Runoff commands may also be embedded in the input file when the 'LIST'

option is used. 1In this case an entry in the file should have the
6®Tormat:

RUNOFF command

If either of these methods 1is used to include additional formatting
commands, care should be taken not to disturb the formatting performed
by DENOTE.

DENOTE does in fact detect and interpret a number of Runoff commands,
that directly impact on its own formatting, as follows:

WIDTH x,.W x Causes DENOTE to reset the 1line width
created in the output file.
'x' is required to be greater than twice
the margin size, and to not exceed 170

.SMARGIN x,.SM x Causes DENOTE to reset the side margin

size in the output file
= 'X'" is required to be such that twice its

Page 47

Structured Programming System PE-T-513, REV "1

value does not exceed the width currently
in force

.BLANK x, .BL x Causes DENOTE to change ‘the value of the
'required' blank character to 'x'

All other Runoff commands are simply passed through to the output file,

Note that although DENOTE interprets these commands and passes them
through to the output file, these are not changed for the Table of
Contents.

The line width, side margin size and 'required' space character used in

the Table of Contents are those in forece when the program starts
execution.

13.4 Runoff Considerations

,%)

DENOTE requires to issue a number of general Runoff commands to ensure
that the Design Notebook is output in the intended manner.

Most of these general commands are located near the beginning of the
output file:

decimalisation setting
footer initialisation
page width setting
table of contents initialisation
'.nfill' - if DENOTE is not in ADJUST mode
'required’' blank initialisation
and near the end of the output file:
t.fill! if DENOTE is not in ADJUST mode
',adj! if DENOTE is not in ADJUST mode
table of contents closure
table of contents insertion into output file

‘D

If the output from DENOTE is to be amalgamated with another document =
some additional commands may require to be inserted. -

It is also important that 1lines of description or design do not

commence with a full-stop wunless they are intended to be Runoff
commands.

Page 48

Structured Programming System PE-T-513, REV 1

14 Design Notebook

@”This document should be produced in every project and this should be
planned from day 1 of a project's life.

This document originates within R&D, is developed in parallel with the
project, and on completion is 'shipped' with the product to the same
audience as its source.

This document must contain:

1. Any global information belonging to a project such as:
high level design information
data structure descriptions
naming conventions used
non-standard design technique documentation

2. Information on every module:
- description
design

The purpose of this document is to maintain in one place the detailed

design of a product and all information gathered during the

development.

This can be of significant interest to all team members during the

development of a product, and subsequently to any people assigned to

maintain it. (The information may also assist field analysts if
(™eirculated that far.)

The production of this document at the end of a project 1is a
prohibitive and unsatisfying task. This is both in terms of the sheer
size of the task, and the effect on project members of having to
produce this in retrospect.

For this reason, among others, it is important that the need for this
document be accepted from day 1 of a project. Most of the information
that belongs in the Design Notebook should exist within the various
modules from their inception, within their Description Blocks and
Design Blocks.

By adopting the recommmended routine format from day 1 of a project's

%éfecyele, this document can easily be produced automatically by wusing
NOTE.

This document should be produced at regular intervals by the project
leader to facilitate an up-to-date assessment of a projects status, as
input to Walkthrough sessions, and for major reviews.

Page 4q

Structured Programming System PE-T-513, REV -1

15 Other Areas for Consideration

After the 1initial polling of the members of R&D (UK) a list was‘QJ
produced itemising those areas that appeared to require attention.
This list appears below:

10.

Definition of Design Techniques required.
A number of books have been ordered for the R&D (UK) Library.

A checklist required for project control.

The definition of a recommended pseudo language.

The definition of STROMA has been produced.

No correspondance between STROMA constructs and programming
language constructs has been suggested.

Standards for program layout required at file level and program
level. -~
Recomendations required on program commenting and indentatiom.

A Routine Format has been suggested, and a PL/P program formatter
has been produced.

Definition required of the documents required at all stages of a
project's lifecycle, with respect to title and contents.

Guidelines requested for the use of commonly used programming
languages, in terms of both style and efficiency.

>

Naming conventions requested for files, routines, ete.

Definition and design of tools requested to:
a) Format PL/P programs - INFORM

b) Program design aid

c) Program commenting aid

d) Project documentation aid - DENOTE

e) Source File System

Creation and maintenance of 1libraries for wutilities, source
routines and declarations.

Organisation of on-line development by means of ufd structuring
and the use of the source file system

It has not been possible to attempt to do something about all of these
items.

Decisions remain to be made as to which of the above should be followed
up, and what resources can be made available for this.

Page 50

-

Structured Programming System PE-T-513, REV 1

Appendix A - Routine Format for Design files

@“he following indicates how the Routine Format described earlier should
appear in a design file.

Since this file format has no language related formatting constraints,
no additional characters are included.

Each of the words:

TITLE
START-DESCRIPTION
END~-DESCRIPTION
START-DESIGN
END-DESIGN

May be preceeded by any number of spaces.

@Qhe format is:

TITLE: the identity of the routine

START~-DESCRIPTION: [<named>]

This is a block of narrative describing the function of the
routine.

Any spaces preceeding the lines in this block are significant.
END-DESCRIPTION

' START-DESIGN: [<name>]
This is a block of design information.

Any spaces preceeding the lines in this block are significant.
END-DESIGN

If a History Block is created manually (or maintained by the Source
File System) then it is recommended that its format be similar to that
of the Description Block and the Design Block.

-

Page 51

Structured Programming System PE-T=-513, REV-1

Appendix B - Routine Format for PL/I files

The following indicates how the Routine Format described earlier should éﬁ
appear in a PL/I, PL/P or PL/IG file.

The information held in this file must be compatible with the
commenting requirements of the PL/I languages.

It must also be compatible with the constraints imposed on the format
of block comments by the comment handling of INFORM (and this has
influenced the design of the other SPS tools).

The SPS package processes comment blocks that commence with a comment
start symbol in column 1. (INFORM will in fact recognise and process
comments that appear anywhere in a line.) If the comment start symbol

is followed by a space then this is considered to be an extension of
the comment symbol (to aid legibility). This space is remeved on input
and forced on output.

In the case of any 1lines that continue such a comment, upto three
spaces at the beginning of the line are considered to be included for
cosmetic reasons. These are removed on input and forced on output. “»

Note that the Description Block and Design Block below are block
comments.

An '&' is used below to represent any space characters generated by the
SPS package.

Each of the words:

TITLE ' ™
START-DESCRIPTION)
END-DESCRIPTION

START-DESIGN

END-DESIGN

START -CODE

END-CODE

may be separated from the '/¥&' or '&&&' begining its 1line by any
number of spaces.)

The format is:

/*¥& TITLE: the identity of the routine ¥/

/*& START-DESCRIPTION: [<name>]

&&& This is a block of narrative describing the function

&&& of the routine.

&%&& This format will be generated by any of the tools in the
&&& SPS suite.

&&& END-DESCRIPTION ¥/

/%% START-DESIGN: [<name>]

&&& This is a block of design information.

&&& This format will be generated by any of the tools in the

&&& SPS suite. <=y
&&& END-DESIGN ¥/

Page 52

Structured Programming System PE-T~513, REV 1

/*& START-CODE: ¥/
The program
/*& END-CODE */

If a History Block 1is created manually (or maintained by the Source

File System) then it is recommended that its format be similar to that
of the Description Block and the Design Block.

Page 53

A

Structured Programming System PE-T-513, REV:-1

Appendix C - Routine Format for Fortran files

The following indicates how the Routine Format described earlier shouldﬁ%
appear in a Fortran file.

The information held in this file must be compatible with the
commenting requirements of the Fortran language.

If the comment start symbol is followed by a space then this is
considered to be an extension of the comment symbol (to aid
legibility). This space is removed on input and forced on output.

Note that the Description Block and Design Block below are 1line
comments.

An '&' is used below to represent any space characters generated by the
SPS package.

Each of the words:

TITLE “
START-DESCRIPTION

END-DESCRIPTION

START-DESIGN

END-DESIGN

START-CODE

END-CODE

may be separated from the 'C&' beginning its line by any number of
spaces.

The format is:
C& TITLE: the identity of the routine

C& START-DESCRIPTION: [<name> 1]
C& This is a block of narrative describing the function
C& of the routine.

C& This format will be generated by any of the tools in the)
C& SPS suite. -

C& END-DESCRIPTION

C& START-DESIGN: [<name>]
C& This is a block of design information.

C& This format will be generated by any of the tools in the
C& SPS suite.

C& END-DESIGN

C& START-CODE:
The program
C& END-CODE

If a History Block is created manually (or maintained by the Source
File System) then it is recommended that its format be similar to that
of the Description Block and the Design Block. -

Page 54

Structured Programming System PE-T-513, REV 1

Appendix D - Routine Format for PMA files

@*he following indicates how the Routine Format described earlier should
appear in a PMA file.
The information held in this file must be compatible with the
commenting requirements of the PMA language.

If the comment start symbol is followed by a space then this is
considered to be an extension of the comment symbol (to aid
legibility). This space is removed on input and forced on output.

Note that the Description Block and Design Block below are line
comments.

An '&' is used below to represent any space characters generated by the
SPS package.

Each of the words:

@“ TITLE
START-DESCRIPTION
END-DESCRIPTION
START-DESIGN
END-DESIGN
START-CODE
END-CODE

may be separated from the '*&' beginning its 1line by any number of

@mpaces.

The format is:
*% TITLE: the identity of the routine

%% START-DESCRIPTION: [<name>]

*¥% This is a block of narrative describing the function

®¥% of the routine.

*& This format will be generated by any of the tools in the
@h *% SPS suite.

*¥%& END-DESCRIPTION

%¥% START-DESIGN: [<name>]

*¥% This is a block of design information.

*% This format will be generated by any of the tools in the
*& SPS suite.

#% END-DESIGN

*¥& START-CODE:
The program
%% END-CODE

If a History Block 1is created manually (or maintained by the Source
File System) then it is recommended that its format be similar to that
@Qf the Description Block and the Design Block.

Page 55

Structured Programming System

PE-T-513, REV- 1

Appendix E - Routine Format for COBOL files

The following indicates how the Routine Format described earlier should Aw

appear in a COBOL file.

The

information held in this file mwmust be compatible with the
commenting requirements of the COBOL language.
If the comment start symbol is followed by a space then this is
considered to be an extension of the comment symbol (to aid
legibility). This space is removed on input and forced on output.
Note that the Description Block and Design Block below are 1line

comments.

An

'&'

SPS package.

Note

the %!

that

v$'
Wwill appear in position 7 of a line.

is used below to represent any space characters generated by the

is wused below to represent a mandatory character, thus

Each of the words:

may be separated from the '$$$$3$$%&?

TITLE

START-DESCRIPTION
END-DESCRIPTION
START-DESIGN
END-DESIGN
START-CODE

END-CODE

of spaces.

The format is:

beginning its line by any number

$$3$$3%& TITLE: the identity of the routine

$$3$345%& START-DESCRIPTION: [<name>]

$$$$88%& This is a block of narrative describing the

$$$$3$*%& function of the routine.

$$5$53%& This format will be generated by any of the tools in the

$$$5$5%& SPS suite.

553555 %& END-DESQRIPTION

$$$$$$%& START-DESIGN: [<name>]

$$$$35%& This is a block of design information.

$$$$33*& This format will be generated by any of the tools in the

$353$3%& SPS suite.

$$$$$$%& END-DESIGN

$$$$$$%& START-CODE:

The program

$$$$35%& END-CODE
If a History Block 1is created manually (or maintained by the Source ﬂ%
File System) then it is recommended that its format be similar to that

Page 56

Structured Programming System PE-T-513, REV 1

} of the Description Block and the Design Block.

&

Page 57

-

Structured Programming System PE-T-513, REV-1

Appendix F - Routine Format for Pascal files

The following indicates how the Routine Format described earlier should =
appear in a Pascal file.

The information held in this file wmust be compatible with the
commenting requirements of the Pascal language.

The SPS package processes comment blocks that commence with a comment
start symbol in column 1.

If the comment start symbol is followed by a space then this is
considered to be an extension of the comment symbol (to aid
legibility). This space is removed on input and forced on output.

In the case of any lines that continue such a comment, upto two spaces
at the beginning of the line are considered to be included for cosmetic
reasons. These are removed on input and forced on output.

Note that the Description Block and Design Block below are block
comments.

An '&' is used below to represent any space characters generated by the’43
SPS package.

Each of the words:

TITLE

START-DESCRIPTION

END-DESCRI PTION

START-DESIGN

END-DESIGN =
START-CODE

END-CODE

may be separated from the '{&' or '&&' beginning its line by any number
of spaces.

The format is:

{& TITLE: the identity of the routine })

{& START-DESCRIPTION: [<name>]

&& This is a block of narrative describing the function

&& of the routine.

%& This format will be generated by any of the tools in the
&& SPS suite.

&& END-DESCRIPTION }

{& START-DESIGN: [<name>]
&& This is a block of design information.

&& This format will be generated by any of the tools in the
&& SPS suite

&& END-DESIGN }
{& START-CODE: }

The program Aﬁ
{& END-CODE }

Page 58

- -~

Structured Programming System PE-T-513, REV 1

If a History Block 1is created manually (or maintained by the Source
@?File System) then it is recommended that its format be similar to that
of the Description Block and the Design Block.

Page 59

-

Structured Programming System PE-T-513, REV-1

Appendix G - Routine Format for Basic files

The following indicates how the Routine Format described earlier should‘dﬁ
appear in a Basic file.

The information held in this file must be compatible with the
commenting requirements of the Basic language.

If the comment start symbol is followed by a space then this is
considered to be an extension of the comment symbol (to aid
legibility). This space is removed on input and forced on output.

Note that the Description Block and Design Block below are 1line
comments.

An '&' is used below to represent any space characters generated by the
SPS package. ’

Note that '$' 1is wused below to represent a mandatory character, thus
the 'REM' will appear in position 6 of a 1line. (This allows the
inclusion of a line number of upto five digits.) A§

Each of the words:

TITLE

START-DESCRIPTION

END-DESCRI PTION

START-DESIGN

END-DESIGN

START-CODE

END-CODE “

may be separated from the '$$$3$REM&' beginning its line by any number
of spaces.

The format is:
$$$$$REM& TITLE: the identity of the routine

$33$$REM& START-DESCRIPTION: [<name>] . ﬁ§
$$$$$REME This is a block of narrative deseribing the

$$$$$REM& function of the routine.

$$$SSREM& This format will be generated by any of the tools in the
$3$$$REME SPS suite.

$$$3$REM& END-DESCRIPTION

$$

$$$REM& START-DESIGN: [<name> 1
$$$$SREM& This is a block of design information,
$$$3$REM& This format will be generated by any of the tools in the
$$$SSREM& SPS suite.
$$$$$REMX END-DESIGN

$$$$$REM& START-CODE:
The program
$$$$SREM& END-CODE

If a History Block is created manually (or maintained by the Source

Page 60

- ~

Structured Programming System PE-T-513, REV 1

File System) then it is recommended that its format be similar to that
of the Description Block and the Design Block.

&

Page 61

.
L.

Structured Programming System PE-T-513, REV-1

Appendix H - Routine Format for CPL files

The following indicates how the Routine Format described earlier should Aﬁ

appear in a CPL file.
The information held in this file must be compatible with the
commenting requirements of the CPL language.

If the comment start symbol is followed by a space then this is
considered to be an extension of the comment symbol (to aid
legibility). This space is removed on input and forced on output.

Note that the Description Block and Design Block below are line
comments.

An '&' is used below to represent any space characters generated by the
SPS package. . .

Each of the words:

TITLE
START-DESCRIPTION
END-DESCRIPTION
START-DESIGN
END-DESIGN
START-CODE
END~-CODE

may be separated from the '/*¥&' beginning its line by any number of

spaces.
The format is:
/*& TITLE: the identity of the routine

/¥& START-DESCRIPTION: [<name>]

/*¥& This is a block of narrative describing the function

/%% of the routine.

/*& This format will be generated by any of the tools in the
/*& SPS suite.

/*& END-DESCRIPTION

/*¥& START-DESIGN: [<name>]
/%¥& This is a block of design information.

/*& This format will be generated by any of the tools in the
/*& SPS suite.

/*& END-DESIGN

/*¥& START-CODE:
The program
/*& END-CODE

If a History Block 1is created manually (or maintained by the Source
File System) then it is recommended that its format be similar to that
of the Description Block and the Design Block.

Page 62

)

v -

Structured Programming System PE-T-513, REV 1

iAppendix I - Routine Format for LISP files

@“The following indicates how the Routine Format described earlier should
.appear in a LISP file.
iThe information held in this file must be compatible with the
icommenting requirements of the LISP language.

i If the comment start symbol is followed by a space then this @s
}con§idered to be an extension of the comment symbol (to aid
ilegibility). This space is removed on input and forced on output.

INote that the Description Block and Design Block below are line
icomments.

iAn '&' is used below to represent any space characters generated by the
1SPS package.

iEach of the words:

TITLE
START-DESCRIPTION
END-DESCRIPTION
START-DESIGN
END-DESIGN
START-CODE
END-CODE

imay be separated from the ';&' beginning its line by any number of

(Tspaces.

iThe format is:

TITLE: the identity of the routine

1 &
& START-DESCRIPTION: [<name>]
This is a block of narrative describing the funetion
of the routine.
This format will be generated by any of the tools in the
SPS suite.
END-DESCRIPTION

. TS
e WO WP WP We e

s &
1 &
7 &
&
&
+& START-DESIGN: [<name>]

& This is a block of design information.

;& This format will be generated by any of the tools in the
& SPS suite.

;& END-DESIGN

&
h
&

- ————— o ——
“wo we we we we

START-CODE :
e program
END-CODE

3
T
)

1If a History Block is created manually (or maintained by the Source
IFile System) then it is recommended that its format be similar to that
G$°f the Description Block and the Design Block.

Page 63

Structured Programming System PE-T-513, REV- 1

iAppendix J - Routine Format for EMACS files

iThe following indicates how the Routine Format described earlier shouldf%
|appear in a EMACS file.

iThe information held 1in this file must be compatible with the
jcommenting requirements of the EMACS language.

1 If the comment start symbol is followed by a space then this is
iconsidered to be an extension of the comment symbol (to aid
ilegibility). This space is removed on input and forced on output.

INote that the Description Block and Design Block below are line
jcomments.

iAn '&' is used below to represent any space characters generated by the
ISPS package.

iEach of the words:

TITLE - f%
START-DESCRIPTION

END-DESCRIPTION

START-DESIGN

END-DESIGN

START-CODE

END-CODE

Emay be separated from the ';&' beginning its 1line by any number of
| spaces.

iThe format is:

i ;& TITLE: the identity of the routine

| ;& START-DESCRIPTION: [<name>]

i ;& This is a block of narrative deseribing the function

i ;& of the routine.

i ;& This format will be generated by any of the tools in the -
i +& SPS suite. -
| ;& END-DESCRIPTION

| ;& START-DESIGN: [<name>]

| ;& This is a block of design information.

| ;& This format will be generated by any of the tools in the

| ;& SPS suite.

| :& END-DESIGN

;& START-CODE:
The program
;& END-CODE

iIf a History Block 1is created manually (or maintained by the Source
!File System) then it is recommended that its format be similar to that
jof the Description Block and the Design Block.)

¢ Page 6u

Structured Programming System PE-T-513, REV 1

iAppendix K - U-0024

-

\1.

Introduction

The initial motivation for the project was the desire to improve
the quality of R & D (UK) software output.

This was to be done by considering the developing of a 'Structured

Programming System'. It was originally thought that this would
consist of:

software tools
programmers guide (including standards)

Because this is being considered by PEOPLE, for PEOPLE to USE the
approach taken was to solicit peoples opinions. R & D (UK) staff
were asked to consider the following topies:

design techniques

design languages

program layout
documentation

structured coding methods
tools

This developed naturally to include a number of other areas of
concern to the individuals polled.

The following sections represent as closely as possible the views
expressed during the discussions held.

It is important to notice that an area of general concern was
project organisation. People were interested in seeing the
structured approach applied throughout a project.

The views expressed in this document will be used as input to the
SPS project.

Design Techniques

1. Design techniques desparately needed.

2. People aware of (and attempted) a 'Top-Down' approach but
some mutations ie 'Middle-Out'’

3. Appreciation of value of obtaining a whole design before
coding starts but not always adhered to

L, They felt that a comparison of currently known techniques
would be useful but that a justified recommendation of a
technique would be satisfactory. :

Page 65

LA

Structured Programming System PE-T-513, REV"1

A recommended methodology must be wusable, in the normal
working environment

Strong requirement for recommendations on project
organisation

Techniques used should encompass and facilitate testing of
the design eg walkthroughs

Project organisation should include definition of documents
to be produced.

The design methodology adopted should encourage consideration
of the future testing requirements

Design Languages (DL)

10.

People felt that these can be useful but must be usable

People felt that self-discipline is needed to maintain a
design language problem statement in an up-to-date form.
Many people felt reluctant to trust a design language
statement of a problem for this reason.

To encourage widespread use of a DL the language chosen must
be liked and easy to maintain

Finite State Diagrams have been adapted to this area for

problems involving critical manipulation of variables and
events.

Flowcharts are sometimes used but people felt constrained by

the technique. Designs were not taken to a detailed level
with this approach.

Michael Jackson Technique as a new approach has been tried
and found ¢to have deficiencies. The philosophy is accepted
and found useful but its representation 1is difficult to
handle and/or maintain.

Warnier Diagrams as a new approach has been tried and is
gaining in popularity.

R-notation was felt to be designed for wuse with assembly
languages. It was felt by some people to be superfluous in
conjunction with a high- level language eg PL/1.

Those people supposedly using it have extended it.

An evolution from R-Notation is the development of structured
commenting.

People would like to see a mapping between DL constructs and

Page 66

‘-

Structured Programming System PE-T-513, REV 1

11.

programming language constructs for commonly used programming
languages.

From 10 the problem of conflict between efficiency and style
arises and guidelines are required.

Program Layout

1.

People were familiar with the mandatory requirement for a
'3-line header' and accepted this.

2. Few people were familiar with the extension to this proposed
in PE-A-49. ’

3. The benefit of keeping routines to 2 listing pages or 1less
was appreciated by a majority of people, but concern was
expressed over the effect of incorporating 1large comments
into these routines.

4, Though people were agreed on the benefits of commenting their
code, this was sometimes done after the code was felt to be
correct.

5. If a standard layout was adopted some interest was shown in a
process where retrospective checking of this was performed.

6. Doubt was expressed as to the value of including distributed
comments in a 'short' routine written in a high-level
language.

7. It was felt that if a standard block comment was introduced
it should include more than that proposed in PE-A-U49
eg 1information on external program entities

revision numbers

8. The current conflicts between 80 column and 120 column media
causes some problems.

9. People see a need for simple layout controls
eg form feeds

Documentation

1. General problems in this area due to lack of direction and
standards. All wunderstocod the requirement for documentation
to be produced.

2. People felt that they would benefit from the existence of

guidelines as to what documents should be produced during a
project.

Page 67

a =

Structured Programﬁing System PE-T-513, REV' 1

The guidelines should contain templates and/or checklists

with respect to the minimum contents and structure of each
document.

Document naming conventions should exist, allowing documents
to be easily identified.

People proposed a number of possible documents and these
proposals have contributed towards the recommended documents.

Structured Coding Methods

People expressed doubts as to the usefulness of structured
coding methods applied to unstructured programming languages.

People would like to see some DOs and DONTs for each commonly
used language, in terms of efficiency and style.

People felt that the use of Structured Coding Methods should
not lead to the generation of multitudes of small routines
(for its own sake) without regard for efficiency.

People have used various naming conventions to distribute
information through their sources. Some people thought that

there was a benefit to be obtained from this being
formalised.

Tools

The only existing tool that people seemed interested in
discussing was the indenter.

People are generally dissatisfied with the formatting
per formed by the indenter, but some are prepared to wuse 1it.

A tool suggested was one that would check for adherance to
layout standards.

People have an awareness of the possibility of extracting
comments from programs.

A desire to have this output compatible with their
documentation was expressed.

The indenter
- felt to be necessary to improve readability
- differing views expressed on formatting required
- felt that good layouts are destroyed

Page 68

C‘“)

“

Structured Programming System PE-T-513, REV 1

5. If a high-level design technique is to be used that involves
some sort of schematic representation then tools must be made
@“ available to handle this.
8. Organisation

This section is included in response to peoples requirements.

There is an interest in the organization of project ufds ¢to

assist in project administration. These could be sub-divided
as follows:

sources
binaries
documentation
ete

Interest was expressed in the creation of various 1library
structures for use by R & D (UK) personnel. If these are

created an administrative mechanism/tool must be available
and be used.

- utilities
generally useful pieces of software that do not belong in
CMDNCO
information on these must be maintained

- source subroutines
generally useful source subroutlnes not appropriate for
inclusion in APPLIB
these should be source loaded into peoples programs, and
must not include any insertions that are non-standard
these must all include a standard block comment

- standard declarations
people would like to see declarations available for
standard library subroutines
these should be source loaded into peoples programs

Attention was drawn to the Proposed Source File System.
This may impact some or all of the proposed tools

Page 59

REFORM: Design Formatter [Rev 2.0]

The correct command line format is:
REFORM input treename [output treensme]
plus the optional keywords:

-NQ or -NO_QUERY to allow overwriting permission
-NUC or -NO UPPER _CASE to prevent converting keywords to
upper case

-UCL or -UPPER CASE TABELS to force labels to upper case

w

INFORM: INstruction FORMatter [Rev 2.0]

The correct command line format is :
INFORM <input> [<output>][<option parameter]
The option parameters are :

-NQ or -NO QUERY to allow overwritting permission

—CCOL xx or —COMMENT COL xx

~-IM xx or ~IMARGIN xx column from which identation is
measured

-RM xx or ~RMARGIN xx

-IND xx or -INDENT xx spaces for each level of identation

~-FITL, default

-NF or -NO_FILL

(xx = decimel number)

RESTATE: REpreSenTATion convErter [Rev 2.0]

The correct command line format is:
RESTATE input treename [output treename]
plus the optional keywords:
-NQ or -NO QUERY to allow overwriting of output file
~xxx to indicate the required format of the output file
when no output file is specified, and the format is %o
change
xxx must be one of:
PL1, PLP, PLAG, FIN, F¥77, PMA, DES, PASCAL, COBOL, BASIC, CPL,
LISP, EMACS
when this option is used the output file name is constructed
from the body of the input treename and xxx

DENOTE: DEsign NOTEbook builder [Rev 2.0]

The correct command line format is:
DENOTE [input treename] [output treeneme]
plus the optional keywords:
—CAT or -CATALOGUE to treat the input as a list of files

-DGN or -DESIGN to extract only design blocks
-DESC or -DESCRIPTION +to extract only description blocks
-ADJ or -ADJUST to generate output in RUNOFF adjust mode

-NQ or -NO QUERY to allow overwriting of output file
-WID x or -WIDTH x to set runoff line width to 'x' chars.
-BL x or -BILANK x to set runoff space character to 'x'
-IS or -INFORM SPLIT to inform user of split lines

~-NM or -NO MESSAGE to put all error messages into a file
-R or -REPORT to report program statistics

TEMPIATE: File Construction Utility [Rev 2.0]

™ The correct command line format is:
TEMPLATE <name>[.<suffix>] [options]
options -PATH <pathname>
-NO_QUERY or -NQ
—<(suffix>

ACCEPTABLE SUFFIXES

LANGUAGE SUFPTX
PL/I - PI1 or PIAG or PLP
Fortran - PN or F77
Prime Macro Assembler -~ PMA
Cobol — COBOL
Pascal ~ PASCAL
- Basic - BASIC
Command Procedure Language - CPL
Lisp - LISP
Emacs - EMACS
Design - DES (NOTE: this will not give a code
block)

* NOTE: All products have been modified to conform to master disk
standards. TFor a description of these modifications, please
read INFO19>STANDARDS.RUNO.

	Cover Page
	i
	Table of Contents
	ii
	iii
	iv
	Changes from Previous Version
	2
	Introduction
	3
	4
	SPS Project
	5
	Routine Format
	6
	7
	8
	9
	10
	11
	Design Expression
	12
	13
	14
	15
	16
	17
	18
	19
	Project Libraries
	20
	21
	Walkthroughs
	22
	23
	24
	TEMPLATE
	25
	26
	27
	REFORM
	28
	29
	30
	31
	RESTATE
	32
	33
	34
	INFORM
	35
	36
	37
	38
	39
	Warnier Diagrams
	40
	SDL
	41
	DENOTE
	42
	43
	44
	45
	46
	47
	48
	Design Notebook
	49
	Other Areas for Consideration
	50
	Appendix A
	Routine Format for Design files
	51
	Appendix B
	Routine Format for PL/I files
	52
	53
	Appendix C
	Routine Format for Fortran files
	54
	Appendix D
	Routine Format for PMA files
	55
	Appendix E
	Routine Format for COBOL files
	56
	57
	Appendix F
	Routine Format for Pascal files
	58
	59
	Appendix G
	Routine Format for Basic files
	60
	61
	Appendix H
	Routine Format for CPL files
	62
	Appendix I
	Routine Format for LISP files
	63
	Appendix J
	Routine Format for EMACS files
	64
	Appendix K
	U-0024 (needs survey)
	65
	66
	67
	68
	69
	70
	71
	72
	Command Line Helps
	73
	74
	75

