
Structured Programming System PE-T-513, REV 1

DATE:•

TO:

FROM:

SUBJECT:

REFERENCE:

March 5 1981

RD&E

Bridget Hale and John Holloway

Structured Programming System

None

SPS - Structured Programming System

Abstract

In December 1979 a project was i n i t i a t e d in Bedford to review the
Structured Design and Programming Techniques in use both in R&D (UK)
and outs ide Prime.

The i n t e r e s t in such techniques suggested tha t the pro jec t should go on
to c r e a t e :

and
a simple, but l o g i c a l l y c o n s i s t e n t , se t of t o o l s

a shor t Programmer's Guide

This document descr ibes the r e s u l t s and i s , in e f f ec t , the Programmer's
IP^uide.

Structured Programming System PE-T-513, REV 1

r Table of Contents

1 Introduction 3

2 SPS Project 5

3 Routine Format 6
3 . 1 Requirement 6
3.2 T i t l e 7
3.3 D e s c r i p t i o n 7
3.4 Design 8
3.5 Code 9
3-6 The L i f e c y c l e of t h e Routine 10

Jt Design Express ion 12
r* 4. 1 General 12

4 .2 STROMA 13
4 . 2 . 1 L a b e l l i n g 15
4 . 2 . 2 Invoca t ion 15
4 . 2 . 3 Invoked Design Uni ts 16
4.2.4 Sequence 16
4.2.5 Selection 16
4.2.6 Iteration 17
4.2.7 Event Handling 18

f* 4.2.8 Special Words 19

5 Project Libraries 20
5.1 P r o j e c t Cata logue 21

6 Walkthroughs 22

7 TEMPLATE 25
7.1 Function 25

^v 7.2 User Interface 25
" 7.3 Processing 26

8 REFORM 28
8.1 Func t ion 28
8.2 User I n t e r f a c e 28
8.3 P roces s ing 29

8 .3 .1 Source format 29
8 . 3 . 2 Output format 30
8 . 3 . 3 Checking 31

8.3.3.1 Syntax Checking 31
8.3.3.2 Consistency Checking 31

9 RESTATE 32

St ruc tu red Programming System PE-T-513, REV 1

9.1 Function 32
9.2 User Interface 32
9.3 Processing 33

9.3.1 Input File Processing 33
9.3.2 Output File Processing 33

10 INFORM 35
10.1 Function 35
10.2 User Interface 35
10.3 Processing 36

10.3.1 Limitations 36
10.3.2 Character-lev el Processing 36
10.3.3 Comment Processing 36
10.3.4 Label Processing 38
10.3.5 Statement Processing 38
10.3.6 Declaration and '

11 Warnier Diagrams 40

11.1 REWARD 40

12 SDL 41

13 DENOTE 42
13.1 Function 42
13.2 User Interface 42
13.3 Processing 44

13.3.1 Project Catalogue Processing 44
13.3.2 Input File Processing 44
13.3.3 Title Processing 45
13.3.4 Description Processing 46
13.3.5 Design Processing , 46
13.3.6 Runoff Command Embedding by the User 47

13.4 Runoff Considerations 48

14 Design Notebook 49

15 Other Areas for Consideration 50

Appendix A - Routine Format for Design files 51

Appendix B - Routine Format for PL/I files 52

Appendix C - Routine Format for Fortran files 54

Appendix D - Routine Format for PMA files 55

Appendix E - Routine Format for COBOL files 56

Appendix F - Routine Format for Pascal files 58

Appendix G - Routine Format for Basic files 60

St ruc tu r ed Programming System PE-T-513, REV 1

Appendix H - Rout ine Format for CPL f i l e s 62

^ p p e n d i x I - Routine Format for LISP f i l e s . . . ; 63

Appendix J - Rout ine Format for EMACS f i l e s 64

Appendix K - U-0024 65

Structured Programming System PE-T-513, REV .1

Changes from Previous Version

All tools have been extended to process files with the following
suffices:

.LISP

.EMACS
and the previously supported suffix .BASICV has been changed to .BASIC
to bring it in line with the file naming standards.

A new tool has been added - TEMPLATE - which builds a dummy SPS module
(including Prime Copyright lines).

Some changes have been made to DENOTE with respect to the manner in
which a Book List is processed.

Page

Structured Programming System PE-T-513, REV 1

1 Introduction

Joday there is a great deal of interest, within the Computer Industry,
in something often rather abstractly described as 'Structured
Programming•.
Much of this is encouraged by the fact that rarely a week passes
without the publication of an article in the trade press, on some new
technique or variant of an existing technique; or the publishing of
yet another book on that same subject.

Opinions on the benefit of the use of these techniques vary greatly,
from:

The belief that a 'junior' member of staff using a Structured
Programming technique is as good as, or better than, the most
experienced member of staff (and is certainly cheaper) .

to:
The be l i e f t ha t the whole theory of Structured Programming can be
summarised in the phrase 'Ban the GOTO'.

In answer: to the f i r s t of the above, no Structured Programming
technique can replace what a person lacks in e i t h e r experiance or
a b i l i t y , in fact a misguided or inappropr ia te use of such techniques
may reduce the performance of a 'good' and/or ' exper ienced ' programmer;
to the second, t ha t i t i s a naive misjudgement of the scope of
Structured Programming.

In many ways 'S t ruc tured Programming' suf fers from the word
'Programming' in i t s name in tha t i t i s f requent ly dismissed as only
jeing appl icable to programmers.

In actual fact the term Structured Programming covers a wide range of
ideas / techniques ranging over a l l of the following:

programming l i b r a r i e s
s t ruc tured coding
design methods
e .g . Top-Down

Data Driven
e t c .

project administration
project organisation
documentation
standards

and many more.

Unfortunately where Structured Programming techniques are used t h i s i s
frequently in a r a the r random fashion and thus the major benef i t s to be
gained from such an approach are invar iab ly l o s t .

Where Structured Programming i s used well the following should a r i s e :

1. A general awareness of d i f f e ren t design techniques and the i r
relevance to pa r t i cu l a r s tages of tire design process .

Page 3

Structured Programming System PE-T-513, REV.1

This serves to strengthen a design and r e s u l t s in methodologies
being es tab l i shed over a period of t ime.

2. The combination of a set of techniques tha t complement one another
thus re - in forc ing the benef i t s to be gained from such an approach.
I t i s important to appreciate tha t the random use of d i s j o i n t
techniques (in the worst case) can ac tua l ly damage a p r o j e c t .

3. The reduction of the cost of a product when considered over the
whole of a product ' s l i f e - c y c l e . At the cur ren t time the only
costs predicted when estimating the cost of a product are those
tha t are incurred during development.
In many cases these cos ts are j u s t the t i p of an i ceberg . The
rea l cos t s only become v i s i b l e years l a t e r when the cos t s of the
following can be ca lcu la t ed :

a) customer support
b) 'bug* adminis t ra t ion ^
c) qua l i t y assurance (repeated for each update) 1
d) loss of goodwill and/or upgrade orders from unhappy

customers
e) bug f ixers
f) delays to new pro jec t s as a r e s u l t of re-assignment of

personnel for ' s h o r t ' periods away from current
assignments to maintenance

These cos t s only disappear t o t a l l y when a product i s withdrawn or
re-implemented. ^

The SPS pro jec t has attempted to look at what i s a l ready in use in the
department and at what people would l i ke to see . This has been done
with the aim of optimising the above.

Page

Structured Programming System PE-T-513, REV 1

2 SPS Project

pjhe SPS project was started by holding sessions with as many of the
v. members of the organisation as was possible, requesting input on the
following topics:

design techniques
design languages
program layout
documentation
structured coding methods
tools

People were thus given the opportuni ty to express t h e i r views on what
they d id , what they would l i k e to do and what they would l i k e to help
them.
The opinions expressed by our col legues at t ha t s tage of the project
ranged over a s u r p r i s i n g l y large area and are co l l a t ed and summarised

rin the document U-0024, these opinions are also included here as an
appendix.

The project then went on to t ry to l ink t h i s input to the more
popular/prominent ideas from ou t s ide , to t r y to s a t i s f y people ' s
requirements in conjunction with maximising the bene f i t s to be gained
from the adoption of Structured Programming t echn iques .

This document descr ibes the r e s u l t s produced by the SPS p r o j e c t . I t
^ e s c r i b e s the too l s produced by the personnel assigned to the project
v n̂d can act as a programmer's guide to the use of these t o o l s . This

document also draws a t t en t i on to a number of areas where fur ther work
could be done to e i t he r e s t a b l i s h s tandards or to produce further
t o o l s .
I t i s hoped tha t in the future as p ro jec t s e s t a b l i s h the need for a
t oo l , t ha t they wil l develop these in a manner such tha t they wil l be
cons is ten t with the SPS package and wi l l be donated to SPS. In t h i s
manner the SPS project wi l l continue to l i v e and grow.

f^he use of the SPS t o o l s and s t y l e by a pro jec t should lead to a
cons is ten t and systematic approach to project o rgan isa t ion and product
development.
This should over a period of time lead to an increase in the qua l i t y of
the products produced, reduce the e f fo r t required to achieve t h i s
qua l i t y , and a v i s i b l e decrease in the amount of maintenance required
by such products as a consequence.

When reading the sec t ions within t h i s document i t i s important to
r e a l i s e tha t the requirements/behaviour of the various too ls and
techniques are highly dependant on one another . For t h i s reason the
requirements of a p a r t i c u l a r language environment when applied to the
items described in t h i s document are discussed in a s e r i e s of
appendices.

Page

S t r u c t u r e d Programming System P E - T - 5 1 3 , REV .1

3 R o u t i n e Format

3.1 Requirement

From t h e b e g i n n i n g of a p r o j e c t i n f o r m a t i o n i s b e i n g b u i l t up a b o u t t h e
p r o j e c t ' s r e q u i r e m e n t s , t h i s t h e n e v o l v e s and grows i n t o a d e s i g n from
which a program i s e v e n t u a l l y c o d e d .

T h i s i n f o r m a t i o n h a s a lways e x i s t e d in some form for a p r o j e c t b u t h a s
n o t a l w a y s been m a i n t a i n e d on t h e m a c h i n e . In v i ew o f t h e d i s t r i b u t e d
l o c a t i o n s of R&D and t h e p r e s e n c e of s o f t w a r e for t r a n s m i t t i n g
i n f o r m a t i o n from one m a c h i n e t o a n o t h e r t h e r e i s a v e r y s t r o n g r e a s o n
for p u t t i n g t h i s i n f o r m a t i o n o n t o t h e m a c h i n e .

However, i t i s a l s o i m p o r t a n t t h a t such i n f o r m a t i o n be t r u s t e d , by
t h o s e who r e f e r to i t , t o be an u p - t o - d a t e r e p r e s e n t a t i o n o f t h a t
i n f o r m a t i o n . In o r d e r t h a t t h e e a s e o f u p d a t i n g s u c h i n f o r m a t i o n be
i n c r e a s e d i t i s p r o p o s e d t h a t i n f o r m a t i o n a s s o c i a t e d w i t h a p a r t i c u l a r
r o u t i n e b e l o c a t e d w i t h t h e s o u r c e o f t h a t r o u t i n e .

A fo rmat for a r o u t i n e i s t h e r f o r e p roposed a s f o l l o w s :

TITLE: t h e i d e n t i t y o f t h e r o u t i n e

START-DESCRIPTION:
T h i s i s a b l o c k o f n a r r a t i v e d e s c r i b i n g t h e f u n c t i o n o f t h e
r o u t i n e .
At a p r o j e c t l e v e l a d e c i s i o n may be t a k e n a s t o t h e t y p e o f
i n f o r m a t i o n i n c l u d e d h e r e .

END-DESCRIPTION

START-DESIGN:
T h i s i s a b l o c k o f d e s i g n i n f o r m a t i o n .
The d e s i g n may be e x p r e s s e d i n any form s u i t a b l e for
i n c l u s i o n in a t e x t - f i l e .

END-DESIGN

START-CODE:
The program

END-CODE

In a d d i t i o n t o t h e above t h e f o l l o w i n g may be p r e s e n t a t t h e s t a r t o f
t h e f i l e in which t h e r o u t i n e (s) a r e h e l d :

t h e m a n d a t o r y f i r s t 3 l i n e s (s e e PE-A-43)

START-HISTORY:
T h i s i s a b l o c k o f h i s t o r y i n f o r m a t i o n c r e a t e d , e i t h e r
m a n u a l l y o r a u t o m a t i c a l l y , (when e i t h e r t h e S o u r c e F i l e
Sys tem or a c a l l a b l e e d i t o r in c o n j u n c t i o n w i t h CPL i s u s e d)
t o c o n t r o l t h e g e n e r a t i o n and m o d i f i c a t i o n o f t h e f i l e .

END-HISTORY

P a s e

St ruc tu red Programming System PE-T-513, REV 1

The r o u t i n e format recommended w i l l encourage people to main ta in

rprojec t i n fo rma t ion of both a d e s c r i p t i v e and a des ign n a t u r e wi th in
. he i r programs.
The d e s c r i p t i v e i n fo rma t ion should be c r e a t e d i n i t i a l l y and modi f i ed ,
as a p p r o p r i a t e , when t h e r o u t i n e i s implemented.
The d e s c r i p t i o n should not be too d e t a i l e d when o r i g i n a l l y w r i t t e n ; in
t h i s way i t w i l l s u r v i v e many d e t a i l e d changes in the succeeding coding
without t h e need for a l t e r a t i o n .
Once the f i r s t implementa t ion has been produced, i t i s imposs ib l e to
make any l o g i c a l changes to a r o u t i n e wi thout c o n s u l t i n g t h e n a r r a t i v e
and the d e s i g n . With t h e suggested format t h e s e w i l l be a t hand . I t
only makes sense to change them a t t h e same t ime a s changing t h e code .

The in format ion con ta ined in t h e s e b locks c o n t r i b u t e s s u b s t a n t i a l l y to
the ease with which a p r o j e c t may be main ta ined and a l so to t h e
p roduc t ion of a p r o j e c t ' s i n t e r n a l documenta t ion .

/#t»Che format shown above o n l y i n d i c a t e s a s i n g l e o c c u r r e n c e of n a r r a t i v e ,
" res ign and code . In p r a c t i c e a r o u t i n e may have any number of t h e s e

b locks in any sequence .

3-2 T i t l e

The function of the title line is to identify the routine. This may
appear to be cosmetic, but it does enable the user to identify
Individual routines when multiple routines are included in a file. It
V lso identifies routines to some of the tools described later in this
document.

The format of the title line is:

TITLE: <name>
*

where <name> is any sequence of characters.

^his format is affected by the commenting requirement of the language
in which the routine is written. This is described fully in a series
of appendices .

3.3 Description

The function of the Description Block is to describe the function of
the routine in as detailed a level as is considered to be appropriate,
in a location where it can be easily found.
It may also be the case that some or all of the following should be
included:

parameter definition/description
externals definition/description
abnormal conditions definition/description

Page

St ruc tu red Programming System PE-T-513, REV 1

I t i s a r e s p o n s i b i l i t y of a P r o j e c t Leader to d e f i n e what should be
p resen t in a D e s c r i p t i o n Block for a p a r t i c u l a r p r o j e c t . I t should
however be remembered t h a t one of the subsequent u ses of t h i s b lock
w i l l be by a maintenance programmer, who may or may not be f a m i l i a r
with the r o u t i n e .

The format of t h e D e s c r i p t i o n Block i s :

START-DESCRIPTION: [<name>]
b lock of n a r r a t i v e

END-DESCRIPTION

where <name> i s an o p t i o n a l sequence of c h a r a c t e r s t h a t may be inc luded
for in format ion p u r p o s e s . (I f p re sen t t h i s w i l l be processed by some
of t he t o o l s d e s c r i b e d in t h i s document.)-

This format i s a f f e c t e d by t h e commenting r e q u i r e m e n t s of t h e language
in which the r o u t i n e i s w r i t t e n . This i s d e s c r i b e d f u l l y in a s e r i e s
of a p p e n d i c e s .

3.4 Design

The func t ion of t h e Design Block i s to document t h e de s ign of t h e
r o u t i n e in as d e t a i l e d a l e v e l as i s cons ide red to be a p p r o p r i a t e , in a
l o c a t i o n where i t can be e a s i l y found.

No comments w i l l be made a t t h i s po in t about what des ign t e c h n i q u e
should be used h e r e , o t h e r than t h a t i t must be c a p a b l e of being
expressed in t h i s b lock .

The des ign in fo rmat ion can be expressed in many forms , for example:

pseudo- language
d e c i s i o n t a b l e s
flow c h a r t s
SADT c h a r t s
Warnier-Orr diagrams
e t c .

I t may, however, be t h e case t h a t some des ign t e c h n i q u e s a r e ha rde r to
express in a Design Block than o t h e r s . What i s to be s t r e s s e d a t t h i s
po in t i s t h a t t h e need
paramount impor t ance .

for t h i s in fo rmat ion t o be documented i s of

The format of t h e Design Block i s :

START-DESIGN: [<name>]
block of des ign informat ion

END-DESIGN

where <name> i s an o p t i o n a l sequence of c h a r a c t e r s t h a t may be inc luded
for in format ion p u r p o s e s . (I f p r e sen t t h i s w i l l be processed by some
of t he t o o l s de sc r i bed in t h i s document.)

Page

Structured Programming System PE-T-513, REV 1

This format is affected by the commenting requirements of the language

fin which the routine is written. This is described fully in a series
of appendices.

3.5 Code

The f u n c t i o n o f t h e c o d e b l o c k i s t o i d e n t i f y t h e p r e s e n c e o f t h e c o d e .

I t i s o f c o u r s e o b v i o u s t h a t mos t c o m p i l e r s can r e c o g n i s e c o d e . The
p r e s e n c e o f t h i s b l o c k may c o n c e i v a b l y be u s e f u l t o some f u t u r e t o o l
t h a t p e r f o r m s some, a s y e t unknown, p r o c e s s i n g on a r o u t i n e .

The fo rmat o f t h e Code Block i s :

START-CODE: [<name>]
S o u r c e code o f r o u t i n e

END-CODE

where <name> i s an o p t i o n a l s e q u e n c e o f c h a r a c t e r s t h a t may b e i n c l u d e d
for i n f o r m a t i o n p u r p o s e s .

Th i s fo rma t i s a f f e c t e d by t h e commenting r e q u i r e m e n t s o f t h e l a n g u a g e
in which t h e r o u t i n e i s w r i t t e n . T h i s i s d e s c r i b e d f u l l y i n a s e r i e s
o f a p p e n d i c e s .

I t would o f c o u r s e be p o s s i b l e t o make u n l i m i t e d p r o n o u n c e m e n t s on how
p e o p l e s h o u l d code t h e i r p r o g r a m s . T h i s i s n o t w i t h i n t h e s c o p e of t h e
SPS p r o j e c t .

A number o f g e n e r a l p o i n t s , h o w e v e r , can be m a d e :

1. S t r u c t u r e d c o d i n g p r i n c i p l e s s h o u l d be a d h e r e d t o , t h o u g h n o t t o
t h e e x c l u s i o n o f common s e n s e .

2 . The code s h o u l d b e i n d e n t e d .

3 . Any naming c o n v e n t i o n s s h o u l d be d o c u m e n t e d , e i t h e r a t a r o u t i n e
l e v e l o r a t a p r o j e c t l e v e l , a s a p p r o p r i a t e .

4 . ' B l o c k ' comments s h o u l d be used r a t h e r t h a n ' e n d - o f - l i n e ' comments
whenever p o s s i b l e , p a r t i c u l a r l y i n t h e c a s e o f b l o c k s t r u c t u r e d
l a n g u a g e s . Any f o r m a t t i n g pe r fo rmed by a t o o l may d i s f i g u r e
e n d - o f - l i n e comments and d e c r e a s e t h e i r u s e f u l n e s s .

5 . G u i d e l i n e s c o u l d be p r o v i d e d t o i n d i c a t e a mapping be tween t h e
c o n s t r u c t s o f commonly used d e s i g n t e c h n i q u e s and t h o s e a v a i l a b l e
in t h e more commonly used i m p l e m e n t a t i o n l a n g u a g e s .

and o b v i o u s l y many m o r e .

Page

St ruc tu r ed Programming System PE-T-513, REV 1

3.6 The Lifecycle of the Routine

A lot has been written by various people on the subject of 'Top-Down
Design1 and 'Step-Wise Refinement*. In actual fact, a majority of
people design their programs using this sort of approach, whether
consciously or unconsciously.

As one thinks through a problem one naturally decomposes it into its
constituent parts, each of which may be further decomposed. It is this
approach that ensures that any problem unit is not so large that it
cannot be comprehended.

Any module is an elaboration of the parent module that spawned it, and
is itself the controlling parent for its own child routines.

It is proposed that a routine will start off its life as little more
than a title and a block of very high level narrative. As time goes on
the level of this narrative will become more detailed. This narrative
should not be viewed as something that can be disposed of at some point
along the development path but as something that lives and grows with
the project. It will later be extracted to become part of an external
design description.

This can now be used as input to a Walkthrough at which the
conceptualisation of the product is reviewed and validated, and its
interface to its operating environment is verified. If a true
'Top-Down' approach is adopted then the Description Blocks of all
routines will exist before progressing to the next stage.

The next stage in the life of a routine is to take the content of the
Description Block and express this as a Design Block. At this stage
more detail becomes apparent in the expression of the routine. This
design information is also alive and able to grow.

Just as the Description Block could
so also can the Design Block.

be used as input to a Walkthrough

It is only when the design is known and validated that the work of
transcribing the design into the corresponding code should take place.

It is generally accepted that the easiest errors to locate and correct
are those that are introduced at the programming phase. The earlier
that an error is introduced into the expression of a problem, the wider
are its repercusions, and the harder and more expensive it is to
correct.

The life cycle described above effectively asks the implementor to
express his problem 3 times:

as narrative
as design
as code

This provides for up to 3 levels of Walkthroughs and should minimise

Page 10

S t r u c t u r e d Programming System PE-T-513, REV 1

the e r r o r s t h a t a re l o c a t e d a t p r o j e c t i n t e g r a t i o n t i m e .

Page 11

Structured Programming System PE-T-513, REV .1

4 Design Expression

4.1 General

A large number of Design Techniques/Languages are now ava i l ab le for
use, and many of these are used to some extent within the department.

Information i s already ava i l ab le within the R&D (UK) Library on a
number of techniques and there are a number of addi t iona l books already
on order . At an in t roductory level the notes from a course e n t i t l e d :

•Software Engineering - The Key to Quality Systems'
provide an overview of many of the techniques cu r r en t l y a v a i l a b l e .

A design may be expressed in any number of forms, for example:

pseudo language
decision t a b l e s / t r e e s
block cha r t s
f i n i t e s t a t e diagrams
SADT cha r t s
Warnier-Orr diagrams
Data St ructure diagrams
e t c .

At a general l e v e l , no one of these techniques can be said to be ' b e s t '
for a l l design requirements. Usually a combination of a small number,
of these techniques wil l be appropriate in solving a s ing le problem.
Different techniques may of course be b e t t e r sui ted to d i f fe ren t
problems.

The importance of ALL of these formal techniques i s t ha t they force the
designer to express a design in a formal fashion, as oposed to j u s t
diving in to the implementation phase.

I t i s important tha t any design technique used should be documented for
the benef i t of anyone not famil iar with tha t t echnique .

When se lec t ing a design technique, the following should be considered:

1. The environment in which i t i s to be used:
a) A technique sui ted to the analys is s tage may not be well

suited to program design.
b) There does not need to be a correspondance between the

cons t ruc t s provided by a design technique and those ava i lab le
in the eventual implementation language.

c) The cons t ruc t s provided by a design technique should be (or
be used) at a higher level than those ava i l ab l e in the
implementation language. Most people have seen flowcharts in
which a box contains the statement ' a=10 f , t h i s i s not a
f au l t of the flowcharting technique but of the person using
i t .

d) The technique should approach na tura l language as much as

Page 12

St ruc tu red Programming System PE-T-513, REV 1

p o s s i b l e (w i th in the c o n s t r a i n t s imposed by t h e p rob lem) ,
e) The r e p r e s e n t a t i o n chosen to expres s t h e des ign should be

such t h a t t h e t r a n s f o r m a t i o n to code i s s t r a i g h t f o r w a r d , and
not e r r o r - p r o n e .

2 . The mechanism used to exp re s s a d e s i g n :
a) The p roces s o f c r e a t i n g a des ign must be s i m p l e .
b) I t must be p o s s i b l e (and easy) to comprehend (and ma in t a in)

t h e e x p r e s s i o n of a d e s i g n .
c) I t must be p o s s i b l e to c i r c u l a t e d e s i g n in format ion to

i n t e r e s t e d p a r t i e s (even i f t h e s e a re spread over a number of
d i s t r i b u t e d s i t e s) .

d) Evo lu t ion of a de s ign e x p r e s s i o n must be p o s s i b l e .

3. The number of des ign t e c h n i q u e s used wi th in a p r o j e c t should (i f
p o s s i b l e) be kept to a minimum.

I f any long term b e n e f i t s a r e to be gained from t h e s y s t e m a t i c use of
j ^ n y des ign t e c h n i q u e then i t i s impor tan t t h a t peop le be encouraged to
v l a m t a i n and evolve t h e o r i g i n a l des ign expressed using t h a t des ign

t e c h n i q u e .

If t h e des ign i s ma in ta ined to r e f l e c t any changes made t o a program
then t h e des ign can t a k e i t s r i g h t f u l p l ace in a p r o j e c t ' s
documenta t ion .
I t should never be n e c e s s a r y t o r e - c r e a t e t h e d e s i g n of a p roduc t a f t e r
i t has been implemented for t h e purpose of producing documen ta t ion .

r r the program i s l o c a t e d p h y s i c a l l y a l o n g s i d e t h e des ign then the
p r o b a b i l i t y of t h e i r being i n - l i n e with one ano the r i s i n c r e a s e d and
t h i s f a c t can be used to h e l p produce t h e much needed documen ta t ion .
This can be done most e a s i l y i f t he des ign t e c h n i q u e used i s t e x t based
r a t h e r than diagram b a s e d .

4 .2 STROMA

(STROMA i s a d i a l e c t of pseudo language t h a t has been produced by t h e
PS p r o j e c t .

After d i s c u s s i o n s with many of the people in the d e p a r t m e n t , i t
appeared t h a t many people a re us ing e i t h e r a pseudo language d i a l e c t ,
or simply e x p r e s s i n g t h e i r des ign in E n g l i s h , by way of S t r u c t u r e d
Comments.

The most commonly used d i a l e c t of pseudo language used wi th in the
depar tment i s known as R-No ta t i on .
Unfo r tuna te ly a number of p e r s o n a l m u t a t i o n s have been in t roduced in to
t h i s d i a l e c t now t h a t i t i s being used with PL/I as an even tua l
implementat ion language r a t h e r than Assembler .
In some extreme c a s e s t h e cor respondance between a PL/I program and i t s
R-Notat ion de s ign i s of a o n e - t o - o n e n a t u r e .

en Engl i sh i s used to express a d e s i g n , ambigui ty and imprec i s enes s

Page 13

Structured Programming System PE-T-513, REV .1

can be introduced due to the manner in which people tend to express
themselves. Also any English descr ip t ion tends to contain only
sequential information.

The in ten t ion in designing STROMA was to encourage people to express
themselves in something akin to Structured English.
For t h i s reason a number of s t ruc tu r ing cons t ruc t s have been defined,
but no ru l e s have been created as to what should be wri t ten within any
of these c o n s t r u c t s .
However, as with any design technique i t s success or f a i l u r e as a
technique depends on the user .

Many learned persons, such as Edsger Di jks t ra , have expressed the
opinion tha t a l l programs can be b u i l t from a combination of elements
known as Sequence, Select ion and I t e r a t i o n .
At a design l eve l the requirement i s ra ther t ha t the cons t ruc t s
ava i lab le to the designer can be decomposed in a p red ic t ab le manner
into these 3 elements as appropriate to the eventual implementation
language. ^

STROMA wi l l be defined in the following sub- sec t ions .
In the examples tha t appear in t h i s section STROMA s t ruc tu r ing words
are cap i t a l i s ed and cons t ruc t s are formatted to emphasise t h e i r cont ro l
s t r u c t u r e .

An example of i t s use i s :

denote: *%
BEGIN

DO initialisation
REPEAT UNTIL no more input files

DO f i l e p roces s ing
END-REPEAT
DO t e r m i n a t i o n

END

i n i t i a l i s a t i o n : ^
BEGIN .)

s e t up parameter d e f a u l t s
ana lyse paramete rs
SELECT
WHEN o u t p u t f i l e e x i s t s

a l low cho ice of a l t e r n a t i v e f i l e
ELSE o u t p u t f i l e does not e x i s t

NULL
END-SELECT

END

f i l e p r o c e s s i n g :
BEGIN

open inpu t f i l e
ou tpu t f i l e in format ion l i n e with RUNOFF c o n t r o l
read a l i n e
REPEAT WHILE not end of f i l e

Page 14

S t r u c t u r e d Programming Sys tem P E - T - 5 1 3 , REV 1

SELECT
WHEN t i t l e l i n e

o u t p u t t i t l e i n f o r m a t i o n l i n e w i t h RUNOFF c o n t r o l
WHEN s t a r t l i n e o f d e s c r i p t i o n o r d e s i g n

i n d i c a t e t h a t l i n e s a r e t o be o u t p u t
WHEN end l i n e o f d e s c r i p t i o n o r d e s i g n

i n d i c a t e t h a t o u t p u t t o c e a s e
ELSE o r d i n a r y l i n e

o u t p u t l i n e i f r e q u i r e d
a hook t a b l e s e a r c h c o u l d b e done a t t h i s p o i n t

END-SELECT
r e a d a l i n e

END-REPEAT
c l o s e i n p u t f i l e

END

t e r m i n a t i o n :
BEGIN

IN c l o s e f i l e s
END

4 . 2 . 1 L a b e l l i n g

Any c o n s t r u c t may be l a b e l l e d .
A l a b e l i s any s e q u e n c e o f c h a r a c t e r s f o l l o w e d by a ' : ' and s h o u l d
a p p e a r on a l i n e on i t s own.

e . g .
g e t n e x t i t e m :

The p u r p o s e o f t h e l a b e l i s t o a l l o w i d e n t i f i c a t i o n o f a p o r t i o n o f t h e
d e s i g n .
T h i s i d e n t i f i c a t i o n i s p u r e l y f o r i d e n t i f i c a t i o n p u r p o s e s , e x c e p t f o r
t h e c a s e o f l a b e l l i n g a p o r t i o n of t h e d e s i g n t h a t h a s b e e n i n v o k e d .

Programming C o n s i d e r a t i o n s :
o r any l a b e l a p p e a r i n g in t h e d e s i g n t h e r e s h o u l d be a c o r r e s p o n d i n g

l a b e l a p p e a r i n g in t h e c o d e (w i t h i n t h e l i m i t a t i o n s o f t h e programming
l a n g u a g e b e i n g u s e d) .

4 . 2 . 2 I n v o c a t i o n

At any p o i n t in t h e c o d e i t i s p o s s i b l e t o i n v o k e a d e s i g n u n i t t h a t
a p p e a r s e l s e w h e r e .
An i n v o c a t i o n c o n s i s t s o f t h e word 'DO1 f o l l o w e d by a name.

e . g .
DO g e t n e x t i t em

A name t h a t i s i n v o k e d s h o u l d c o r r e s p o n d t o a l a b e l a p p e a r i n g in t h e
d e s i g n u n l e s s i t i s t h e name o f an e x t e r n a l m o d u l e ,
'.t may be c o n v e n i e n t t o i n d i c a t e t h a t a d e s i g n u n i t i s d e f i n e d

Page 15

S t r u c t u r e d Programming System PE-T-513, REV1

e x t e r n a l l y by i n c l u d i n g the word 'EXTERNAL'.

e s
'DO EXTERNAL tnou

If a d d i t i o n a l in format ion i s to be suppl ied about t h e i n v o c a t i o n then
t h i s may fol low t h e name; a ' : ' , ' (' or ' [' may be used to s e p a r a t e
the name from such comments.

Programming C o n s i d e r a t i o n s :
The use of t h e i n v o c a t i o n c o n s t r u c t in the des ign does not n e c e s s a r i l y
imply t h a t a s u b r o u t i n e c a l l w i l l be implemented.

4 . 2 . 3 Invoked Design Uni ts

A s e c t i o n of t h e des ign t h a t i s invoked c o n s i s t s of a mandatory l a b e l ,
followed by 'BEGIN', followed by a po r t i on of d e s i g n , followed by
'END' .

e.g.
get next item:

BEGIN
comment sequence

END

The word 'END' implicitly causes a return from the invoked unit to the
construct following the invocation.

4.2.4 Sequence

A sequence of comments may appear at any level in the design, and
consists of one or more comments.
Each comment should be written on a new line.

e.g. "
set up parameter defaults

Programming Considerations:
Design language statements should not normally correspond to a single
programming language statement.

4.2.5 Selection

The 'SELECT' c o n s t r u c t p r o v i d e s the d e s i g n e r with a mechanism for
de f in ing m u l t i p l e c h o i c e s . This c o n s t r u c t has the fo l lowing format :

SELECT
WHEN condition definition

comment sequence
WHEN condition definition

comment sequence

Page 16

St ruc tu r ed Programming System PE-T-513, REV 1

ELSE c o n d i t i o n d e f i n i t i o n
comment sequence

END-SELECT

The ELSE» p a r t of t h i s s t a t e m e n t i s mandatory .
I t s func t ion i s to ensure t h a t t h e de s igne r has given some thought t o
t he ques t i on of what happens to t h e c o n d i t i o n s t h a t a r e o f t en not
s p e c i f i e d .
I t may be the case t h a t in p r a c t i c e the 'ELSE' p a r t of t h e c o n s t r u c t
of ten c o n t a i n s on ly an i n s t r u c t i o n to do n o t h i n g . (A s p e c i a l word i s
in t roduced l a t e r for exp re s s ing t h i s .)
Only one of t h e m u l t i p l e c h o i c e s i s ever s e l e c t e d .
A c o n d i t i o n d e f i n i t i o n may invo lve one or more c o n d i t i o n s .

e . g .
SELECT
WHEN tempera ture>20

DO warm p r o c e s s i n g
WHEN tempera tu re<5

DO cold p r o c e s s i n g
ELSE 5 <= t e m p e r a t u r e < 20

no a c t i o n r e q u i r e d
END-SELECT

Programming C o n s i d e r a t i o n s :
I f a s e l e c t i o n r e q u i r e s to be made between more than two c h o i c e s then
i t should be expressed as such in t h e d e s i g n , even though the
implementat ion language may r e s t r i c t the implementor to a two way
c h o i c e .

4 . 2 . 6 I t e r a t i o n

The 'REPEAT' c o n s t r u c t p r o v i d e s the d e s i g n e r with a mechanism for
de f in ing t h e c o n t r o l of a l o o p . This c o n s t r u c t has t h e fol lowing
format:

REPEAT r e p e t i t i o n d e f i n i t i o n
comment sequence

END-REPEAT

The r e p e t i t i o n d e f i n i t i o n must be one of:

WHILE c o n d i t i o n d e f i n i t i o n
UNTIL c o n d i t i o n d e f i n i t i o n
FOR c o n t r o l d e s c r i p t i o n

When t h e 'WHILE' op t ion i s used , t he t e s t involved i s performed a t the
s t a r t of t h e i t e r a t i o n . I t i s t h e r e f o r e p o s s i b l e t h a t no i t e r a t i o n s
may r e s u l t from t h i s form of t h e c o n s t r u c t .
When t h e 'UNTIL' o p t i o n i s u sed , the t e s t involved i s performed a t the
end of the i t e r a t i o n . I t i s t h e r e f o r e t h e case t h a t a t l e a s t one

i t e r a t i o n w i l l always o c c u r .

Page 17

S t r u c t u r e d Programming System P E - T - 5 1 3 , REV-1

When t h e 'FOR' o p t i o n i s u s e d , t h e wording of t h e ' c o n t r o l d e s c r i p t i o n '
shou ld imply how t h e c o n t r o l i s t o be i m p l e m e n t e d . I t i s p o s s i b l e t h a t
no i t e r a t i o n s may r e s u l t from t h i s form of t h e c o n s t r u c t .

A r e p e t i t i o n d e f i n i t i o n may i n v o l v e one o r more o f t h e d e f i n i t i o n
c l a u s e s .

e &
REPEAT WHILE n o t end o f f i l e

DO f i l e p r o c e s s i n g
END-REPEAT

REPEAT UNTIL end of f i l e
' DO f i l e p r o c e s s i n g

END-REPEAT

REPEAT FOR e a c h p e r s o n on p a y r o l l
DO p r o d u c e p a y s l i p

END-REPEAT

4 . 2 . 7 Event H a n d l i n g

The 'MONITOR' c o n s t r u c t p r o v i d e s t h e d e s i g n e r w i t h a mechanism t o
d e f i n e r e s p o n s e s t o e v e n t s . These e v e n t s may b e e i t h e r ' h a r d ' o r
' s o f t ' e v e n t s ; ' h a r d ' e v e n t s b e i n g a u t o m a t i c a l l y d e t e c t e d , w h e r e a s
' s o f t ' e v e n t s have t o be d e t e c t e d e x p l i c i t l y .
A s i n g l e 'MONITOR' c o n s t r u c t may be c o n c e r n e d w i t h more t h a n one e v e n t .
T h i s c o n s t r u c t h a s t h e f o l l o w i n g f o r m a t :

MONITOR c o n d i t i o n l i s t
comment s e q u e n c e
i f none o f t h e c o n d i t i o n s o c c u r t h e n
c o n t r o l p a s s e s t o t h e end of t h e s t a t e m e n t

ADMIT c o n d i t i o n l i s t
a c t i o n s c o r r e s p o n d i n g t o t h e s e c o n d i t i o n s

ADMIT c o n d i t i o n l i s t
a c t i o n s c o r r e s p o n d i n g t o t h e s e c o n d i t i o n s

END-MONITOR

Note t h a t e ach c o n d i t i o n b e i n g m o n i t o r e d mus t h a v e a c o r r e s p o n d i n g
•ADMIT' c l a u s e .

When a ' s o f t ' c o n d i t i o n i s b e i n g e x p l i c i t l y d e t e c t e d a s p e c i a l
c o n s t r u c t 'BREAK' i s used in c o n j u n c t i o n wi th t h a t c o n d i t i o n name .

e < R
MONITOR b r e a k - k e y

p r o c e s s f i l e
ADMIT b r e a k - k e y

DO c o n t r o l l e d shu t -down
e x i t from program

END-MONITOR

Page 18

1#e3t\

S t r u c t u r e d Programming Sys tem P E - T - 5 1 3 , REV 1

REPEAT UNTIL end o f f i l e
-^ MONITOR end o f t a p e
t r e a d r e c o r d from t a p e

SELECT
WHEN end o f t a p e

BREAK end of t a p e
ELSE n o t end o f t a p e

p r o c e s s r e c o r d
END-SELECT

ADMIT end o f t a p e
BEGIN

DO g e t n e x t t a p e
END

END-MONITOR
END-REPEAT

Programming C o n s i d e r a t i o n s :
J ^ x t r e m e c a r e s h o u l d be t a k e n when i m p l e m e n t i n g a 'MONITOR* c o n s t r u c t .
" -ach ' s o f t ' e v e n t c o u l d r e q u i r e two 'GOTO' s t a t e m e n t s and e a c h ' h a r d '

e v e n t c o u l d r e q u i r e one 'GOTO' s t a t e m e n t .

4 . 2 . 8 S p e c i a l Words

A number o f s p e c i a l words h a v e been d e f i n e d t o e n a b l e a number of
s t a n d a r d r e q u i r e m e n t s t o b e e x p r e s s e d in un i fo rm ways . These can each
o c c u r a s a comment .

'BREAK' n o r m a l l y c a u s e s a ' r e t u r n ' up one l e v e l o f c o n t r o l .
I t s o t h e r u s e i s i n t h e 'MONITOR' c o n s t r u c t when u sed i n c o n j u n c t i o n
w i t h t h e d e t e c t i o n o f a ' s o f t ' e v e n t , when i t c a u s e s c o n t r o l t o be
passed t o t h e c o r r e s p o n d i n g 'ADMIT' c l a u s e .

'NEXT' i s o n l y m e a n i n g f u l i n a 'REPEAT' c o n s t r u c t . I t c a u s e s t h e n e x t
i t e r a t i o n t o b e commenced.

J**NULL' i s used t o i n d i c a t e t h a t no comment i s p r e s e n t . T h i s w i l l
t y p i c a l l y be used in t h e 'ELSE' p a r t of t h e 'SELECT' c o n s t r u c t .

Page 19

Structured Programming System PE-T-513, REV .1

5 Project Libraries

All project work items are currently organised into project ufds for
the purpose of handing a product over to SDI.
At this time there are few requirements as regards to the organisation
of such a ufd, other than that the command files supplied with the
product should take account of any internal organisation.
Different projects adopt different organisational arrangements for
their project work items for this handover.
The format of the ufd organisation during development does not always
match this structure. Frequently people favour the idea of working in
their own ufds and only move software into a project ufd for
integration and final testing.

It is, however, very important that all members of a project team and
any other interested parties be able to locate any project work item
with ease.
This can best be done i f a project ufd and i t s associated s t r uc tu r e i s
defined for any p ro j ec t .
The ' p ro j ec t l i b r a r y ' r e f l e c t s the fact tha t a team of people work
together with the common objec t ive of c rea t ing one product. In the
past one often saw several indiv iduals going about t h e i r work in an
individual way and only coming together on the grea t day of
' i n t e g r a t i o n ' . I t i s not surpr is ing tha t sometimes t h e i r separa te
components did not match one another.
Nowadays we see the development process as more co -ope ra t ive , people
will d iscuss and negot ia te in te r faces or funct ions , the re i s a sense of
c o l l e c t i v e r e s p o n s i b i l i t y for the whole product. The pro jec t
es tabl ished to re inforce the team and answer t h e i r day to day
information.
With a projec t ' l i b r a r y ' i t i s no longer necessary to r e l y on
memory, hurredly wri t ten notes or second source rumours to
an in t e r f ace or funct ion. If the fac ts have been defined at
wil l be ea s i l y found within the ' l i b r a r y ' .

Some of the benef i t s to be gained from creat ing a pro jec t ufd in which
a l l work items are crea ted/kept are as follows:

The t o t a l asse t s of a project are kept together and are ava i l ab le
to any in t e re s t ed par ty .

ufd
need

i s
for

f a l l i b l e
understand
a l l , they

1.

2.

3.

4.

5.

6.

Appropriate backup and recovery procedures can be adopted for a
project as a whole.

Standard procedures can be created for product building that are
based on the organisation adopted.

A working space is set aside for a project and resources can be
more easily be assigned to a project.

File naming conventions can be established for a project and the
conformance to such standards is easily visible.

Any questions about a project should be resolvable by reference to

Page 20

St ruc tu r ed Programming System PE-T-513, REV 1

t h e p r o j e c t ufd s i n c e a l l work i t ems r e s i d e t h e r e .

The p r o j e c t ufd r e p r e s e n t s a source of s t a t u s in fo rmat ion for a l l
p r o j e c t members and for management.

8. The p r o j e c t ufd p rov ides an o p p o r t u n i t y t o r e s o l v e c o n t e n t i o n for
c e n t r a l p r o j e c t r e s o u r c e s such as s u b r o u t i n e l i b r a r i e s .

No s t r u c t u r e for a p r o j e c t ufd can be l a i d down a r b i t r a r i l y . I t can
only be sa id t h a t whenever p o s s i b l e t he p r o j e c t l e a d e r should c r e a t e a
ufd s t r u c t u r e or s t r u c t u r e s t h a t permit p r o j e c t members to e a s i l y
f u l f i l l t h e i r p r o j e c t r e s p o n s i b i l i t i e s .

In dec id ing on a ufd s t r u c t u r e t h e e x i s t e n c e of t h e fo l lowing should be
c o n s i d e r e d :

m u l t i p l e p roduc t u n i t s wi th in a l a r g e p r o j e c t
documentation
source files
binary files
command files
testing requirements
subroutine libraries

together with any other considerations specific to a particular
project.

V . 1 Project Catalogue

The Project Catalogue is a definitive list of the resources of a
project.
By maintaining a list, in a known place, of all source files, insert
files, and any other interesting material, that project clearly
identifies its resources.

'Such a list could be used in conjunction with Project Specific CPL
futilities to perform project specific tasks regardless of the structure
iof the Project Library.

For example, a CPL utility could be written to compile each file listed
in the Project Catalogue using the compiler appropriate to the file's
suffix. Such a utility could recognise that certain entries in the
catalogue (e.g. insert or design files) are not eligible for
compilation.

An entry in the catalogue must consist of the full treename of the file
and any parameter options required/recognised by project utilities.

A use of the Project Catalogue is described for the tool DENOTE (later
in this document).

Page 21

Structured Programming System PE-T-513, REV 1

6 Walkthroughs

The Walkthrough was mentioned briefly in the section on the Lifecycle
of a Routine.
I t was said there t ha t at a Walkthrough

' t h e conceptual i sa t ion of the product i s reviewed and v a l i d a t e d '
and tha t the l i f e c y c l e described in tha t sect ion e f f e c t i v e l y asks the
implementor to express h i s problem three t imes:

as n a r r a t i v e
as design
as code

thus providing for up to three levels of Walkthrough.

In actual fact those three instances of Walkthroughs in a Routine's
Lifecycle are but a few of the possible instances when a Walkthrough
can be usefully held during a Project's Lifecycle.

In any project anyone with a particular problem tends to discuss a
problem area at great length with either the Project Leader and/or a
collegue. The process of explaining a problem can often make a
solution visible, and/or the other person may see a solution or provide
useful ideas.
However, it is frequently the case that large areas of a product are
not seen by anyone other than their originators simply because there
appear to be NO problems in these areas.

In the situation where Walkthroughs are employed then the whole project
will be examined. Obviously some areas will still be considered to be
straightforward and therefore receive less attention than known
'problem' areas, but the whole product will be reviewed.
As a result of this approach a situation should develop where the
project team are satisfied as regards to the correctness of the design
(and the code), the accuracy and style of the implementation, the
exhaustiveness of testing, and last but by no'means least the quality
of the documentation.

A number of things can be achieved as the result of a Waklthrough;
these include some or all of the following:

1. The introduction of a work item to the project team by its
originator - after a successful Walkthrough the project
effectively takes collective responsibility for that work item.

2. The review of the development of an existing work item.

3. To catch any errors (in code and/or design) as early as possible
in a project with a view to minimising their effect and the
subsequent cost of correcting them.
Typical of the kind of errors that can be detected and/or
prevented are:

those arising out of interface problems/incompatibilities
missing functions
misin terpre ted functions

Page 22

St ruc tu r ed Programming System PE-T-513, REV 1

**. To invo lve p r o j e c t members in as much of t h e p r o j e c t as p o s s i b l e
and to i n c r e a s e t h e i r awareness of t h e p r o j e c t ' s s t a t e a t any
t i m e .

5. To i n s t i l l in p r o j e c t members a ' t o t a l ' r e s p o n s i b i l i t y for a
'who le ' p r o d u c t .

6. To moni tor p r o g r e s s .

7. To o b t a i n adv ice from any ' e x p e r t s ' i n v i t e d to the Walkthrough.

8. To monitor the p r o j e c t implementat ion s t y l e .

9. To v e r i f y t h a t documentat ion r e f l e c t s t h e s t a t e of t he p r o j e c t .

10. To f a c i l i t a t e t h e exchange of i n fo rma t ion through the p r o j e c t
members.

*f Walkthroughs a r e to be used then they should be i n s t i t u t e d as e a r l y
in the p r o j e c t ' s l i f e c y c l e a s p o s s i b l e and be scheduled to t a k e p lace
a t a number of s p e c i f i c p o i n t s in t h a t l i f e c y c l e .

A Walkthrough should be held a t t h e beg inn ing of a p r o j e c t to d i s c u s s
t h e Marketing Requirements and/or Base Document of t h e p r o j e c t and
ensure t h a t a l l p r o j e c t members unders tand what i s r e q u i r e d to be
produced.

he next s t e p i s u s u a l l y t o produce a F u n c t i o n a l S p e c i f i c a t i o n . This
c r u c i a l document can be reviewed s e c t i o n by s e c t i o n in Walkthrough
s t y l e d i s c u s s i o n s . When t h a t s p e c i f i c a t i o n i s a g r e e d , t h e des ign work
can begin in e a r n e s t .

If t h e proposed l i f e c y c l e for a r o u t i n e i s be ing fo l lowed , t h e f i r s t
job i s to w r i t e D e s c r i p t i o n Blocks for t h e main r o u t i n e s .
These may be keyed in and p r i n t e d v i a DENOTE or j u s t l e f t hand w r i t t e n ,
s i n c e , a t t h i s s t a g e , d e t a i l s a re s t i l l be ing t i e d down.
A Walkthrough can then be he ld on t h e D e s c r i p t i o n Blocks e s t a b l i s h e d
for the planned r o u t i n e s . This makes su re t h a t t h e embryo r o u t i n e s a r e
being conceived along the r i g h t l i n e s b e f o r e d e t a i l e d des ign i s
committed.

The next l e v e l of Walkthrough can be he ld on t h e Design Blocks
cor responding to r o u t i n e s . At t h i s t ime i t w i l l be p o s s i b l e to see the
l e v e l of complex i ty inc luded in each r o u t i n e and r e c o g n i s e the shape of
the proposed p r o d u c t .
The in format ion a v a i l a b l e a t t h i s s t a g e can lead t o a r e - e v a l u a t i o n of
p ro jec t ed t i m e s c a l e s . I t should a l so al low a judgement to be made as
to which r o u t i n e s w i l l r e c e i v e f u r t h e r Walkthroughs when they have been
coded.

Addi t iona l Walkthroughs may be held on the code of v a r i o u s r o u t i n e s .
Often r o u t i n e s w i l l be s e l e c t e d on t h e b a s i s of t h e complex i ty of t h e i r

^design. There i s , however, no harm in a l s o s e l e c t i n g a number of
r o u t i n e s a t random for examinat ion at a Walkthrough.

Page 23

Structured Programming System PE-T-513, REV-1

If the e a r l i e r Walkthroughs served the i r purpose c o r r e c t l y few problems
should be detected at t h i s s t age .

In addi t ion to the above Walkthroughs held during' the evolution of the
rout ines tha t wil l eventual ly make up a product, Walkthroughs can also
be held during the t e s t i n g phase of development. The expression
' t e s t i n g phase1 i s used here to encompass a l l a c t i v i t i e s associa ted
with t e s t i n g ; thus including planning, t e s t generat ion and r e s u l t
predic t ion/checking .
I t may well be the case tha t in sp i t e of the Walkthroughs held so far ,
d i f fe ren t project members may have d i f fe ren t ideas of what r e s u l t s are
expected from a p a r t i c u l a r t e s t s e t , and these can then be reso lved .

Walkthroughs can also be held to guide the production of documentation,
to review i t s qua l i t y and accuracy. The Functional Specif ica t ion
should have been examined ear ly on ' in the P r o j e c t ' s Li fecycle . The
Description and Design Blocks for rou t ines should also have been
val idated and combined in to a Design Speci f ica t ion or Design Notebook,
using DENOTE or some s imilar t o o l . A Walkthrough can now be held to
consider any documentation produced for pub l i ca t ion .

I t can thus be seen tha t the Walkthrough can play a s i g n i f i c a n t par t in
a p r o j e c t ' s development cycle when i t ' s use i s encouraged.
I t i s a lso important tha t the use of t h i s tool (for i t i s a t o o l , l i k e
any of the o the rs described in t h i s document) be planned and scheduled
into a Project Plan. If too few are held , then any (or perhaps a l l)
benef i t s may be l o s t ; i f too many are he ld , then the projec t could
become one long meeting and l i t t l e work wi l l be accomplished.
The cor rec t balance between Walkthroughs and work i s important and can
only be judged by exper iance.

«
If Walkthroughs are used then the following must be remembered if they
are to stand a chance of being successful :

1. The work items of each project member must be seen to be subject
to the same reviewing process - no one should be exempt.

2. The Walkthrough i s not used when things go wrong in order to find
a scape-goat for any project s l ippage .

3. Project members accept the usefulness of these sess ions and
cont r ibu te to them.

Page 24

St ruc tu red Programming System PE-T-513, REV 1

!7 TEMPLATE

^EMPLATE i s a u t i l i t y which b u i l d s the o u t l i n e framework of the
; tandard SPS f i l e c o n s t r u c t i o n , in a format a p p r o p r i a t e to t h e
{requested f i l e t y p e .

7. 1 Funct ion

TEMPLATE is intended to create a shell in which the final file can be
built. To this end the following will be included in the framework:

1. A Copyright Block which includes the file name, location of file,
author, function and date.

2. A Title Line giving the routine name and function.

3. A History Block with the first entry being information on the date
when the template was constructed.

4. A Description Block.

5. A Design Block.

6. A Code Block, provided that the file language type is not design
or that the penultimate component of the file name is not .INS.

Use of TEMPLATE allows the programmer to set up 'stub' routines easily
nen using a 'top-down' approach to development. It also ensures that
a module conforms to both PRIME and SPS file formats.

!7.2 User Interface

[TEMPLATE is invoked by:

TEMPLATE base[.<suffix>][control arguments]

inhere base.<suffix> is the name of the file that is to be created.
i If the name of the file specified is 'base' then '-<suffix>' must be
[specified as a control argument. If the name of the file specified is
i'base.<suffix>' then '-<suffix>' must not be specified as a control
i argument.

!The control arguments may be chosen from the following in any order.

! -PATH <pathname> If specified this must be followed by the
! pathname of the ufd in which the file is
! to be created.
! Default pathname is the current attached
! UFD.

-NO_QUERY, -NQ If specified this will result in the
named file overwriting any file of that

Page 25

Structured Programming System PE-T-513, REV-1

name in the specified UFD, without
verification request.

-<suffix> If omitted .<suffix> must be specified.
A null suffix will not be accepted.
This parameter may be one of the strings:
fPL1f 'PLP' 'PL1G' 'FTN' 'F77' 'PMA'
'COBOL' 'PASCAL' 'DES' 'BASIC 'CPL'
'LISP' 'EMACS'
and indicates that the file to be
produced should be of the corresponding
type.

TEMPLATE will then ask for additional information with the following
prompts:

FUNCTION: Mandatory. A one line description of the
function of the routine.

AUTHOR: Mandatory.

DESCRIPTION PROFILE: An option which allows you to insert the
contents of a specific file into your
Description Block. (If no file to be
included type <return>).
This can be used to include project
specific information within all project
modules.

CODE PROFILE: This prompt will not appear if a design
file or an insert file is being built.
This is an option which allows you to
insert the contents of a specific file
into your code block. (If no file is to
be included type <return>.)

7.3 Processing

TEMPLATE creates a file which contains the following:

1. A Copyright Block conforming to PRIME standards.

2. A Title Line consisting of the routine name and function.

3. A History Block with an entry showing the date the template was
constructed.

4. A Description Block. If a description profile has been provided
then the contents of this file will be inserted into this part of
the file. If no description profile is provided then a line
saying 'description to be inserted • is inserted here.

5. A Design Block, which provides the basis for a STROMA based

Page 26

Structured Programming System PE-T-513, REV 1

design.

A Code Block, this block will not appear in a design file or an
insert file. If a code profile has been provided then the

i contents of this file will be inserted into this part of Template.
! If the language type is PL/I, this block will additionally
I contain, a label, a dummy Procedure declaration and an end.

!The following table links the format of the contents of a file to its
icorresponding suffix:

contents suffix
PUTT TFTI—
PL/IG .PL1G
PL/P .PLP
PMA .PMA
COBOL .COBOL
F o r t r a n .FTN
F o r t r a n 77 .F77
P a s c a l .PASCAL

i B a s i c .BASIC
D e s i g n .DES
CPL .CPL
LISP .LISP
EMACS E x t e n s i o n File.EMACS

iThe f o r m a t s o f e a c h o f t h e s e f i l e t y p e s a r e d e s c r i b e d in a s e r i e s o f
Jbappend i c e s .
\ . h e s e a r e v e r y i m p o r t a n t a s p a r t i c u l a r c h a r a c t e r s e q u e n c e s a r e
i g e n e r a t e d fo r a g i v e n f i l e t y p e .

Page 27

St ruc tu red Programming System PE-T-513, REV .1

8 REFORM

REFORM i s a REpresen ta t ion FORMatter for use on f i l . es c o n t a i n i n g STROMA
c o n s t r u c t s embedded wi th in Design Blocks .

8. 1 Func t ion

REFORM i s in tended to speed STROMA des ign e n t r y and v e r i f i c a t i o n
through t h r e e f u n c t i o n s :

1.

2.

3.

Elementary syntax checking of STROMA constructs.

Reformatting the STROMA design for increased readability through
uniform indentation conventions.

Simple consistency checking over the design, flagging the missing
design of invoked units and the inclusion of uninvoked design
units.

Use of REFORM allows the programmer to enter STROMA design quickly,
without regard to format, and yet still have readable designs whose
physical formats reflect their logical structures. STROMA designs
which have already been indented by REFORM are passed through this
formatter without change, allowing easy editing of existing designs.

8.2 User Interface

REFORM is invoked by:

REFORM input [output] [control arguments]

Where ' input' is the treename of the source file to be reformated and
'output' is the treename of the result file, if omitted the source file
will be replaced. If errors are detected, the input file will not be
modified and the output will be left in a temporary file whose name
will be given to the user in an error message.

The control arguments may be chosen from the following in any order:

-NO UPPER CASE, -NUC Inhibits the conversion of keywords to
upper case.

-UPPER__CASE_LABELS, -UCL Causes labels to be converted to upper
case .
(Default - labels output in the form
read.)

Page 28

http://fil.es

St ruc tu r ed Programming System PE-T-513, REV 1

-NO_QUERY, -NQ Suppresses v e r i f i c a t i o n r e q u e s t i f
' ou tpu t* a l r e a d y e x i s t s or i s o m i t t e d .
(Defau l t - v e r i f i c a t i o n w i l l be
r e q u e s t e d .)
Ignored i f no t reenames have been
s p e c i f i e d , t he use r needs h e l p .

The f i lename s e l e c t e d v ia t h e inpu t t reename must conform to the
s tandard naming convent ion adopted by t h e S . P . S . package . This l i m i t s
REFORM to on ly p r o c e s s i n g f i l e s whose language format i s i n d i c a t e d
using a f i l e s u f f i x .
The recogn ised s u f f i x e s a r e :

c o n t e n t s s u f f i x
run TFTI—
PL/IG .PL1G
PL/P .PLP
PMA .PMA

* COBOL .COBOL
Fortran .FTN
Fortran 77 .F77
Pascal .PASCAL
Basic .BASIC
Design .DES
CPL .CPL
LISP .LISP
EMACS Extension File.EMACS

In addition to the above, REFORM accepts a null suffix as indicating a
Design file.

If an output file is specified it must conform to the standard and be
of the same language type as the input file.

The formats of each of these file types are described in a series of
appendices. These are very important as particular character sequences
are recognised/generated for a given file type, and particular
Character sequences are discarded. If the described formats are not
used it is possible that a file may not be formatted.

8.3 Processing

8.3.1 Source format

The design blocks present in the input file must adhere to the layout
requirement of the language contained in the file, together with the
further restrictions imposed by S.P.S. (described in the appendices).

Abbreviations have been defined for the STROMA keywords as follows:

Page 29

S t r u c t u r e d Programming System PE-T-513, REV 1

keyword
REPEAT
END-REPEAT
BREAK
SELECT
END-SELECT
MONITOR
END-MONITOR
ADMIT
ELSE

abbreviation
REP
ER
BRK
SEL
ES
MON
EM
ADM
OTHERWISE

These are recognised on input as being equivalent to the corresponding
keyword and converted to the corresponding keyword.

The actual design expressed in STROMA has only two simple, restrictions
other than syntactic restrictions, applied to it.

1. All STROMA keywords, except for WHILE and UNTIL, must be the first
word on a line in order for REFORM to recognise them. The J
keywords FOR, WHILE and UNTIL are considered to be extensions of
REPEAT.

2. A STROMA construct must not span more than one design block.

Consequently the STROMA contained in a design block can be free format
subject to the two restrictions mentioned above.

8.3.2 Output format

REFORM performs simple indentation together with some text manipulation
on the STROMA source. The indentation performed is fixed but the text
manipulation is selected via the command line keywords.

The indentation rules applied are:

1. Begin construct and end construct keywords are aligned, in •/<%
addition the keywords identifying subordinate WHEN and ELSE J
clauses of the SELECT construct are aligned with the SELECT
keyword.

2. Text within a construct is indented one level (three spaces).

3. Blank lines are maintained, none are generated.

!4. Lines commencing with a fullstop ('.') are left unchanged as these
I may represent Runoff commands embedded in the Design.

The text manipulation performed is the forcing of recognised keywords
or labels to uppercase, if required, and the detection of '_' as the
first character on a line. The single underscore character is
translated into seven underscores to cause the line to be indented A
further. This can be used as a means of indicating text that is

Page 30

St ruc tu red Programming System PE-T-513, REV 1

s u b o r d i n a t e t o , or a c o n t i n u a t i o n of, t h e p reced ing l i n e .

6.3.3 Checking

8 . 3 . 3 . 1 Syntax Checking

Syntax checking is performed on each design block in isolation with
END-DESIGN as the closing keyword of the grammar. The syntax rules
applied are those described informally in the section on STROMA. If a
syntax error is detected in a design block then the rest of that design
block is not parsed, it is just copied to the output file. REFORM
restarts parsing design on the next design block encountered.

Syntax errors are reported with the following error message format:

#^ Error at line 'line no.1 in design 'clause' starting on line 'line
no.1 contains an unexpected 'keyword' at line 'line no.'.

This indicates both the current construct and the illegal keyword
detected within it.

8.3.3.2 Consistency Checking

REFORM performs simple consistancy checking over the design it
v processes. The checking is only performed on syntactically correct
design.

The objective of the consistancy checking is to notify the user of
REFORM when no design exists within the file for an invoked unit and/or
when a design exists for an invokable unit but it is not referenced
within the rest of the design. This results in two benefits: one,
complete designs can be detected; and two, attention can be drawn to
invoked units whose design is external to the design being processed.

Therefore a complete and error free design when processed by REFORM
will result in REFORM only notifying the user of external units
referenced within the design. This facility can be used to indicate
PRIMOS routines referenced in a design. Within the design they can be
included as invoked units but of course no corresponding design will be
present. When the design is processed by REFORM the routines present
will be flagged as invoked routines with no design.

The consistancy checking is performed by REFORM building two internal
tables, one of invoked routine names and the other of named design
units. After formatting the design contained in a file, provided no
errors were detected, these two tables are compared and any
discrepancies are reported. The text following the keyword DO upto a
':' or •(' or '[' character is used as the name of an invoked routine,
and the label preceding an invoked design unit as the name of a design
unit.

Page - 31

Structured Programming System PE-T-513, REV 1

9 RESTATE

RESTATE is a REpreSenTATion convErter. J

9. 1 Function

RESTATE converts a file containing Title Lines, Description Blocks and
Design Blocks into a comment form suitable for the intended
implementation language.

This relieves the user of the tedious task of converting the contents
of a design file into a form compatible with the commenting
requirements of the implementation language.

As a by-product a file containing comments in any of the recognised
languages may be converted to a file of another type. (Note that
RESTATE does not change any code statements and will therefore not
convert a source program from one language to another.) >

9.2 User Interface

RESTATE is invoked by:

RESTATE input [output] [control arguments]

Where 'input' is the treename of the source file to be input for***)
comment conversion, and 'output' is the treename of the file to be
produced. If 'output' is omitted and no control argument is supplied
to specify the output file type, then the input file will be replaced.
If errors are detected, the input file will not be modified and the
output will be left in a'temporary file whose name will be given to the
user in an error message.
If no errors are detected and the input file is not being overwritten
then the input file will be deleted.

The program will only perform its conversion between files whose names-
include recognised suffixes.

The control arguments may be chosen from the following in any order:

-N0J3UERY, -NQ Suppresses verification request if
'output' already exists or is omitted .
Also suppresses verification request on
possible deletion of input file.
(Default - verification will be
requested.)

-xxx This parameter may be one of the strings:
'PL1' 'PLP' 'PL1G' 'FTN' 'F77' 'PMA'
'COBOL' 'PASCAL' 'DES' 'BASIC 'CPL'
'LISP' 'EMACS' ^
and indicates that the file to be

Page 32

St ruc tu red Programming System PE-T-513, REV 1

produced should have a s i m i l a r name to
t h a t of t he i n p u t , but with the l a s t
su f f i x r ep laced by * x x x ' .
I f t h i s c o n t r o l argument i s s p e c i f i e d
then t h e ou tpu t f i l e should not be
s p e c i f i e d .

9.3 Process ing

9-3.1 Input F i l e P roces s ing

This t o o l w i l l on ly p r o c e s s a f i l e with an . accep tab le s u f f i x .

The fol lowing t a b l e l i n k s the format of t h e c o n t e n t s of a f i l e t o i t s
cor responding s u f f i x :

c o n t e n t s
PL/I
PL/IG
PL/P
PMA
COBOL
F o r t r a n
F o r t r a n 77
P a s c a l
B a s i c
Design
CPL
LISP

s u f f i x
.PL1
.PL1G
.PLP
.PMA
.COBOL
.FTN
.F77
.PASCAL
.BASIC
.DES
.CPL
.LISP

EMACS Extens ion File.EMACS

The formats of each of t h e s e f i l e t ypes a r e d e s c r i b e d in a s e r i e s of
appendices.
These are very important as particular character sequences are
recognised for a given file type, and particular character sequences
are discarded. If the described formats are not used it is possible
that an incorrect conversion will be performed.

9.3.2 Output File Processing

This tool will only process a file with an acceptable suffix.

The following table links the format of the contents of a file to its
corresponding suffix:

contents suffix
PX7I TPX1—
PL/IG .PL1G
PL/P .PLP

N PMA .PMA

Page 33

Structured Programming System PE-T-513, REV • 1

COBOL .COBOL
Fortran .FTN
Fortran 77 .F77
Pascal .PASCAL
Basic .BASIC
Design .DES
CPL .CPL
LISP .LISP
EMACS Extension File.EMACS

The formats of each of these file types are described in a series of
appendices.
These are very important as particular character sequences are
generated for a given file type.

When the suffix of the input file is not 'DES' the comment structure of
the input file is maintained in the output file.

When the suffix of the input file is 'DES' then the following comment
structure is created, as appropriate to the commenting conventions
required for the file format:

Title Line - a single line comment
Description Block - a block comment
Design Block - a block comment
Start Code Line - a single line comment
End Code Line - a single line comment

Page 34

S t r u c t u r e d Programming System PE-T-513, REV 1

10 INFORM

INFORM is an INstruction FORMatter for use with PL/P programs.

10.1 Funct ion

INFORM i s in tended to speed PL/P program e n t r y and development through
two f u n c t i o n s :

1. P r e - c o m p i l a t i o n syntax checking for matching p a r e n t h e s e s , ends ,
q u o t e s , i f - t h e n - e l s e c o n s t r u c t s , and comment d e l i m i t e r s .

2. Reformat t ing t h e program t e x t for i n c r e a s e d r e a d a b i l i t y th rough
uniform spac ing and i n d e n t a t i o n c o n v e n t i o n s .

Use of INFORM al lows t h e programmer to e n t e r PL/P programs q u i c k l y ,
wi thout regard to format , and yet s t i l l have r e a d a b l e programs whose

^ p h y s i c a l formats r e f l e c t t h e i r l o g i c a l s t r u c t u r e s . Programs which have
a l r eady been inden ted by INFORM are passed th rough t h e fo rma t t e r
without change , a l lowing easy e d i t i n g of e x i s t i n g programs.

10.2 User I n t e r f a c e

INFORM i s invoked by:

JPN INFORM inpu t [o u t p u t] [c o n t r o l arguments]

Where ' i n p u t * i s t h e t reename of t h e source f i l e t o be inden ted and
' o u t p u t ' i s t h e t reename of t h e r e s u l t f i l e , i f omi t t ed t h e sou rce f i l e
w i l l be r e p l a c e d . I f e r r o r s a r e d e t e c t e d , t h e i n p u t f i l e w i l l no t be
modified and the ou tpu t w i l l be l e f t in a temporary f i l e whose name
w i l l be g iven to t h e use r in an e r r o r message .

The c o n t r o l arguments may be chosen from the fo l lowing in any o r d e r :

-LMARGIN xx, -LM xx Se t s t h e i n d e n t a t i o n for t h e ou te rmost
l e v e l of n e s t i n g to be ' x x ' spaces
(d e f a u l t 8, r a n g e : 1 to r i g h t margin
minus 3 9) .

-RMARGIN xx, -RM xx Sets t h e column number beyond which
non-comment, n o n - s t r i n g t e x t w i l l no t be
placed to be ' x x ' (d e f a u l t £ 8 , t h e s i z e

. o f t h e PL/P l i s t i n g wi thou t ' - o f f s e t ' ,
r a n g e : l e f t margin + 39 to 2 5 6) .

-C0MMENT_C0L xx, -CC xx Se t s t h e column to which remark comments
w i l l be indented to be ' x x ' (d e f a u l t 50,
r a n g e : l e f t margin + 1M to r i g h t margin
- 2 5) .

-INDENT xx, -IND xx Se ts t he number of spaces to inden t for

Page 35

St ruc tu r ed Programming System PE-T-513, REV 1

-NO FILL, -NF

-NO QUERY, -NQ

each l o g i c a l l e v e l of n e s t i n g
(d e f a u l t 3) .

to be xx'

Causes format to maintain the line
structure of the input, except extra
lines will be added as necessary for line
breaking, (default 'fill!, line breaks
within input statements will be ignored,
except blank lines are maintained).

Suppresses verification request if
'output* already exists or is omitted
(default verification will be requested).

10.3 Processing

10.3.1 Limitations

INFORM cannot process a statement longer than 8191 characters or 1000
lexical items, excluding labels and preceding header comments (this
limitation does not apply to declaration statements) . All the header
comments preceding a statement may not contain more than 8191
characters. No line of text, after indentation, may be longer than 256
characters.

10.3.2 Character-level Processing

INFORM deletes
t i t - i t / i

and '->'

unnecessary spaces within

are both preceded and followed by a
are followed
that ' (f and

lines and
/ ? t t i # # t
s i t i

blank, that f

ensures that '&'

' and
f))' , not ') by a blank when that makes sense (e.g.,

1 *' are preceded by a blank when that makes sense,
that f+! and •-' are always preceded by a blank and are followed
blank when they are not unary. Needless to say, this processing
NOT occur within comments and character string constants.

) ') ,

and
by a
does

1 0 . 3 . 3 Comment Process ing

INFORM r e c o g n i z e s two k inds of comments: remark comments, which are
those preceded on t h e i n p u t l i n e by one or more non-b lank c h a r a c t e r s ,
and header comments, which a re t hose on a l i n e by t h e m s e l v e s .

Remark comments a r e a l igned to the column s p e c i f i e d by t h e ' - c c '
command l i n e pa r ame te r , or 3 columns to t h e r i g h t of t h e l a s t t e x t on
the l i n e , whichever i s l a r g e r . Text fo l lowing t h e remark i s p laced on
a new l i n e .

Header comments a re l e f t - j u s t i f i e d and a b lank l i n e i s i n s e r t e d before
and a f t e r , i f one i s not a l r eady p r e s e n t .

Page 36

Structured Programming System PE-T-513, REV 1

INFORM manipulates only the spaces preceding the comment text, all
'other internal spaces are preserved. For both header and remark
comments spaces following the start comment symbol '/** are compressed
to one space.
Thus:

/* A line of text.

is transformed in to

/* A l i n e of t e x t .

Spaces following the text of a comment and the close comment symbol
'*/' are unaltered, except that if no spaces are present one is
inserted. A close comment symbol on a line alone is aligned with its
corresponding start symbol.

f̂ For comment continuation lines INFORM attempts to perform simple
indentation. Continuation line of remark comments are left justified.
Thus:

/* The f i r s t l i n e of remark
the second line and now
the last line */

becomes

' /* The first line of a remark
the second line and now
the last line */

A similar approach is taken to header comments, and in the simple case
left justified text is produced. However as some spaces at the start
of lines may have been introduced by the comment's author an attempt is
made to preserve them. The approach taken is that as three spaces are
Nnecessary to give left justified text, INFORM ensures that at least
three are present. Three or less spaces on a line are forced to three
spaces, more than three spaces are left unaltered.

The following is an example of INFORMS handling of header comments:

/* A header comment with
continuation lines, preceded by a varying
number of spaces. (1 space becomes 3)
A continuation line, (2 spaces become 3)
another line (3 spaces remain as 3)
penultimate line (4 spaces remain as 4)
last line (6 spaces remain as 6) */

becomes

/* A header comment with
continuation lines, preceded by a varying

Page 37

Structured Programming System PE-T-513, REV-1

number of spaces. (1 space becomes 3)
A continuation line, (2 spaces become 3)
another line (3 spaces remain as 3)
penultimate line (4 spaces remain as 4)
last line (6 spaces remain as 6) */

10.3.4 Label Processing

Each label (with i t s associated remark comment, i f any) i s placed on a
separate l i n e . The labe l i s l e f t - j u s t i f i e d , r ega rd l e s s of current
indentat ion l e v e l , for ease of locat ion when scanning the t e x t .

10.3.5 Statement Processing

Each statement begins a new line in the indented text, with the
starting column determined as described below by its relationship with
'do', 'proc', 'begin', 'select', 'end', and 'if-then-else' statements.
If the statement after indentation is larger than the right margin will
allow on a single line, INFORM attempts to break the line at a
delimiter or, failing that, just before the overflowing string,
identifier, or number. If a single string or identifier is too large
to fit between the indented margin and the right margin, the right
margin is ignored (as it is for comments). The rest of the text will
continue on the next line indented an additional 3 increments past the
current logical nesting level.

Text contained in 'proc', 'begin', 'do', and 'select' groups (along
with the 'proc', but not including the other 3 statements) is indented
one increment past the surrounding text; 'end' statements are aligned
with the rest of the group they close and cause the following statement
to be 'outdented' one increment.

The 'then' clause of an 'if statement is placed on a separate line and
aligned with the 'if (a 'do', 'begin', or 'select' group in a 'then'
clause is indent one increment past the 'then'); similarly, if A
present, the 'else' is aligned to the level of the 'if (a 'do', '
'begin', or 'select' group in an 'else' clause is indented one
increment past the 'else' level).

The 'when' and 'otherwise' statements of a 'select' statement are
aligned with their controlling 'select'. The contained statement is
indented one increment on a seperate line.

10.3.6 Declaration and '^statement' Processing

The first line is left-justified and subsequent lines, unless resulting
from a broken line, are indented 4 spaces if 'del' was used, 9 for
'^replace' constructs, and 8 if 'declare' was the keyword, so that the
identifiers will line up. No special processing occurs within
parentheses in a declaration statement. The text is passed directly ^
through to the output, subject to line breaking and the appropriate

Page 33

Structured Programming System PE-T-513, REV 1

indentation. At parenthesis level 0, however, two functions occur:

1. Each comma results in a new line, enforcing the 'one identifier
per line' constraint of structured coding (which allows one to
scan for the declaration of an identifier more easily).

2. Structures are indented one increment for each level greater than
1.

Page 39

St ruc tu red Programming System PE-T-513, REV-1

11 Warnier Diagrams

One t echn ique t h a t i t i s f e l t can be used more and more in the f u t u r e ^
i s t h a t known as the Warnier or t he Warnier /Orr System.

This t e chn ique i s p a r t i c u l a r l y use fu l as i t can be used to e x p r e s s both
t h e da t a and t h e l o g i c flow wi th in a sys tem, wi thou t s i g n i f i c a n t l y
c o n s t r a i n i n g a d e s i g n .

Unfo r tuna t e ly where t h e s e a re used the in fo rmat ion i s r a r e l y main ta ined
and i s f r e q u e n t l y d i s c a r d e d . In order to o b t a i n t h e b e s t p o s s i b l e
r e t u r n from t h e use of t h i s t echn ique a machine i n t e r f a c e must be
c o n s t r u c t e d .

Fur the r in fo rmat ion on t h i s t echn ique can be ob ta ined from t h e book:
S t r u c t u r e d Systems Development

a v a i l a b l e in t h e R&D (UK) L i b r a r y ,
or from John Howell

11.1 REWARD

A tool is required to facilitate the inputing of Warnier diagram
information, layout the information and output sections of the design.

This tool has not been implemented, nor has its required functionality
been determined.

Page 40

Structured Programming System PE-T-513, REV 1

12 SDL

-SDL (Software Design Language) is a tool to aid in designing and
documenting a program or system of programs.

This is described in PE-T-462.

This package does not appear to encourage/allow the design and the code
of a program to exist in the same file.
It also requires a number of control commands to be included within the
design.

The software is available on the Bedford machine as X.SDL.
Instructions for using it are available in PE-T-462.

Page 41

S t r u c t u r e d Programming System PE-T-513, REV-1

13 DENOTE

13.1 Funct ion

DENOTE - the DEsign NOTEbook b u i l d e r - i s a u t i l i t y t h a t has been
designed to f a c i l i t a t e t he product ion of a p i ece of PRIME I n t e r n a l
p r o j e c t documenta t ion , h e r e a f t e r r e f e r r e d to as t h e Design Notebook.

The purpose of DENOTE i s t o e x t r a c t D e s c r i p t i o n Blocks and/or Design
Blocks from f i l e s in a s u i t a b l e format , and to produce an amalgam of
t h e s e b l o c k s , t o g e t h e r with Runoff c o n t r o l commands for subsequent
input t o Runoff.

The e x i s t e n c e of t h i s t o o l makes i t very s imple t o produce an
u p - t o - d a t e document a t any s t a g e of a p r o j e c t ' s l i f e c y c l e from which
an assessment can be made of t h e s t a t e of t h e p r o j e c t .

I t should be noted t h a t i t i s e s s e n t i a l t h a t some ground r u l e s be
e s t a b l i s h e d from day 1 as r e g a r d s to the manner in which D e s c r i p t i o n
Blocks and Design Blocks a r e to be c r e a t e d , s i n c e t h i s w i l l a f f e c t t h e
subsequent appearance of t h e Design Notebook. Any need t o perform
s u b s t a n t i a l e d i t i n g of t h e s e b locks w i l l d e t r a c t from t h e ease with
which the Design Notebook can be produced. I t i s a l s o impor tan t t h a t
t he c o n t e n t s of t h e s e b locks be cons idered a t a p r o j e c t l e v e l .

13.2 User I n t e r f a c e

DENOTE i s invoked by:

DENOTE inpu t ou tpu t [c o n t r o l arguments]

Where ' i n p u t ' i s t h e t reename of t he source f i l e from which in fo rma t ion
i s normal ly (see -LIST o p t i o n) e x t r a c t e d , and ' o u t p u t ' i s t h e t reename
of t he f i l e to be produced. I f e i t h e r of t h e s e names a r e omi t ted t h e
program w i l l r e q u e s t t h a t t h e s e names be provided b e f o r e i t w i l l
c o n t i n u e .

' I n p u t ' may in f a c t be a wi ldcarded name, t h u s caus ing the program to
perform i t s e x t r a c t i o n from a number of f i l e s . The program w i l l on ly
perform in fo rmat ion e x t r a c t i o n from f i l e s whose names i n c l u d e a
recognised s u f f i x .

The c o n t r o l arguments may be chosen from the fo l lowing in any o r d e r :

-LIST, -LI If t h i s i s s p e c i f i e d , ' i n p u t ' i s
cons t r a ined to be a s imple (no t
wi ldcarded) t r eename .
' I n p u t ' must then c o n t a i n a l i s t of
t reenames (o p t i o n a l l y wi ldcarded) from
which in format ion i s t o be e x t r a c t e d . ^

! • This i s a s p e c i f i c use of a P r o j e c t

Page 42

Structured Programming System PE-T-513, REV 1

production
Catalogue, described earlier.
This option facilitates the
of:
1. a partial Design Notebook
2. an ordered Design Notebook
3. a Design Notebook when the filenames

to be specified cannot easily be
expressed by a single wildcarded
name

-DESCRIPTION, -DSC If this is specified, only Description
Blocks will be extracted from the inputs.
If neither -DESCRIPTION nor -DESIGN are
supplied as control arguments then both
Description Blocks and Design Blocks will
be extracted.

-DESIGN, -DGN If this is specified, only Design Blocks
will be extracted from the inputs.
If neither -DESCRIPTION nor -DESIGN are
supplied as control arguments then both
Description Blocks and Design Blocks will
be extracted.

-ADJUST, -ADJ

-NO_QUERY, -NQ

If this is specified foutput' will be a
Runoff compatible file produced in
•adjust1 mode.
If this is not specified (default)
'output' will be a Runoff compatible file
produced in 'no fill' mode.

If this is specified and 'output' already
exists then the program will overwrite
the file without requesting permission to
do so.

-WIDTH x, -W x If this is specified then a
'x' is created in the
otherwise a line width
generated.
' x ' i s required to
to not exceed 170.

l i n e width of
output f i l e ,

of 85 is

be g rea te r than 14 and

-BLANK x, -BL x If this is specified then fx' should be a
charcter that will be created and used as
the Runoff 'required' blank character
when in 'ADJUST' mode.
If this is not specified the character
'&' is used.

-INFORM__SPLIT, -IS If this is specified then
report any input lines that

DENOTE will
it has to

split when not in 'ADJUST' mode.

Page 43

St ruc tu red Programming System PE-T-513, REV-1

-NO MESSAGE, -MM If t h i s i s s p e c i f i e d warning messages a re
ou tpu t to a temporary f i l e i n s t e a d of t o
' the s c r e e n .

13.3 Process ing

13 .3 .1 P r o j e c t Catalogue Process ing

DENOTE r e c o g n i s e s t h e fol lowing types of e n t r i e s
Ca ta logue :

in Proj ect

1. Runoff entry.
This has the format:

RUNOFF <Runoff command>
For further details see later in this document.

2. File entry.
This has the format:

treename [control arguments]
The control arguments recognised by DENOTE are:

-NO_BOOK This indicates that there is to be no
entry in the Design Notebook for the
indicated file

Any further control arguments are assumed to relate to project
utilities and are ignored by DENOTE. ^

13.3.2 Input File Processing

This tool will only extract information from a file with an acceptable
suffix. Since the extraction method is linked to this suffix it is
important that the routine format selected corresponds to the file
suffix.

The following table links the format of the contents of a file to its
corresponding suffix:

contents
t>L/t
PL/IG
PL/P
PMA
COBOL
F o r t r a n
F o r t r a n
P a s c a l

i B a s i c
Design
CPL

! LISP
! EMACS Ex

77

t e n s i o n

s u f f i x
.M.1
.PL1G
.PLP
.PMA
.COBOL
.FTN
• F77
.PASCAL
.BASIC
.DES
.CPL
.LISP

File.EMACS

Page 44

St ruc tu r ed Programming System PE-T-513 REV 1

The formats of each of t h e s e f i l e t ypes a re d e s c r i b e d in a s e r i e s of
(A p p e n d i c e s .

These a r e ve ry impor t an t as p a r t i c u l a r c h a r a c t e r sequences a re
recognised for a given f i l e t y p e , and p a r t i c u l a r c h a r a c t e r sequences
a re d i s c a r d e d . If t h e de sc r ibed formats a re not used i t i s p o s s i b l e
t h a t in fo rmat ion could be d i s c a r d e d by DENOTE.

At the l e v e l of an i n d i v i d u a l f i l e t he only p r o c e s s i n g performed i s to
cause t h e o u t p u t t i n g of i t s t reename in a hyphenated box wi th in t h e
main p a r t of t h e document and t h e g e n e r a t i o n of a f i r s t - l e v e l t i t l e in
the Table of Con ten t s . -

13 .3 .3 T i t l e P rocess ing

The normal format of a 'TITLE' l i n e i s :

TITLE: <name>

as def ined in t h e s e c t i o n on Routine Format.

The ou tpu t p r o c e s s i n g performed s p e c i f i c t o a 'TITLE' l i n e i s t o cause
the o u t p u t t i n g of t h e name in an a s t e r i s k e d box (on a new page i f
a p p r o p r i a t e) w i th in t h e main p a r t of t h e document and t h e g e n e r a t i o n of
a s e c o n d - l e v e l t i t l e in t h e Table of C o n t e n t s .

I f a D e s c r i p t i o n Block or a Design Block i s be ing processed when the
'TITLE' l i n e i s met then t h a t p roces s ing i s t e r m i n a t e d .

Since i t i s accepted t h a t a u se r may r e q u i r e more than 2 l e v e l s of
t i t l e i n g in a Table of Contents some a d d i t i o n a l forms of t h e 'TITLE'
l i n e a r e a c c e p t e d , as f o l l o w s :

TITLE-D: <name>
Causes t h e t i t l e - l e v e l to be i n c r e a s e d by 1 be fo re o u t p u t t i n g
t h e t i t l e t o t h e Table of C o n t e n t s .
If t h e s imple 'TITLE' l i n e i s used a f t e r t h i s command then
t h a t t i t l e i s ou tpu t a t t h e l e v e l which i s then c u r r e n t .

TITLE-U:
Causes the t i t l e - l e v e l to be decremented by 1. The
t i t l e - l e v e l i s never decremented p a s t 2 .

TITLE-U: <name>
Causes t h e t i t l e - l e v e l to be decremented by 1 before
o u t p u t t i n g t h e t i t l e to the Table of C o n t e n t s .

Page 45

St ruc tu r ed Programming System PE-T-513, REV-1

13.3-4 D e s c r i p t i o n Process ing

The normal format of a D e s c r i p t i o n Block i s :

START-DESCRIPTION: [<name>]
b lock of t e x t

END-DESCRIPTION

as def ined in t h e s e c t i o n on Routine Format .

I f the s t a r t of a D e s c r i p t i o n Block i s l o c a t e d and i t i s t o be
e x t r a c t e d then commands a r e genera ted to ensure t h a t a t l e a s t 10 l i n e s
w i l l f i t on t h e c u r r e n t page .
The g e n e r a t i o n of t h e head ing :

DESCRIPTION: [<name>]
i s then caused (n o t e t h a t in t h i s case 'name' i s o p t i o n a l) . The l i n e s
of t h e b lock a re then passed ac ross to t h e o u t p u t f i l e .

When DENOTE i s no t in 'ADJUST' mode t h e only p r o c e s s i n g performed on
t h e s e l i n e s r e l a t e s to t h e i r l e n g t h . If t h e l e n g t h of a l i n e exceeds
the l i n e width then DENOTE a t t e m p t s to s p l i t t h e c o n t e n t s of t h e l i n e
in a r e a s o n a b l e manner (wi thou t t h i s , Runoff would a r b i t r a r i l y s p l i t
t he l i n e) . Any l i n e s p l i t t i n g i s r e p o r t e d i f t h i s i s r e q u e s t e d .

When DENOTE i s in 'ADJUST' mode then i t a d d i t i o n a l l y a n a l y s e s the
c o n t e n t s of each l i n e t o de t e rmine , whether any sup lementa ry Runoff
commands should be inc luded to g e n e r a t e a l a y o u t c o n s i s t e n t with t h a t
i n p u t . At a s imple l e v e l t h i s c o n s i s t s of g e n e r a t i n g commands to
c o n t r o l i n d e n t a t i o n and s p a c i n g .

At a f u r t h e r l e v e l i s t h e need for t h e i n c l u s i o n of mandatory spaces
when a t a b u l a r l a y o u t i s r equ i r ed and t h e need to cause l i n e b reak ing
to be performed wi thout i nc lud ing blank l i n e s . Each of t h e s e t a s k s ,
r e q u i r e some i n d i c a t i o n in t h e t e x t of t h e u s e r ' s r e q u i r e m e n t . The
c h a r a c t e r a s c i i - 2 0 0 has been chosen for each of t h e s e r e q u i r e m e n t s and
must be inc luded in t h e Desc r ip t i on Block by t h e user t o o b t a i n t h e
d e s i r e d e f f e c t .
This c h a r a c t e r was chosen because i t i s not p r i n t e d by t h e s p o o l e r . I t
can be ob t a ined on many t e r m i n a l s by t h e c h a r a c t e r combinat ion c o n t r o l
and ' @' .
The p resence of a s c i i - 2 0 0 p r e f i x i n g a group of spaces causes the
' r e q u i r e d * space c h a r a c t e r to be genera ted for each of t h e s e s p a c e s ,
thus caus ing Runoff to fo rce t h e c o r r e c t number of s p a c e s .
The presence of a s c i i - 2 0 0 a t the end of a l i n e c a u s e s a l i n e break
command to be g e n e r a t e d .

13 .3 .5 Design P rocess ing

The normal format of a Design block i s :

START-DESIGN: [<name>]
block of text

END-DESIGN

Page 46

Structured Programming System PE-T-513, REV 1

As defined in the section on Routine Format.

If the start of a Design Block is located and it is to be extracted
then commands are generated to ensure that at least 10 lines will fit
on the current page.

The generation of the heading:
DESIGN: [<name>]

is then caused (note that in this case 'name1 is optional).

The lines of the block are then passed across to the output file.

When DENOTE is not in 'ADJUST' mode the only procesing perfomed on
these lines relates to their length. If the length of a line exceeds
the line width then DENOTE attempts to split the contents of the line
in a reasonable manner (without this, Runoff would arbitrarily split
the line). Any line splitting is reported if this is requested.
tes

When DENOTE i s in 'ADJUST' mode each l i n e i s ou tpu t in such a way as to
appear on a new l i n e with a p p r o p r i a t e i n d e n t a t i o n . There i s no need
for t he i n c l u s i o n of s p e c i a l c h a r a c t e r s .

13 .3 .6 Runoff Command Embedding by t h e User

The user of DENOTE may wish to cause a d d i t i o n a l Runoff commands to be
/sswfed through to t h e o u t p u t f i l e for some pu rpose .
^ This can be done in two ways.

Runoff commands may be embedded in t h e D e s c r i p t i o n Blocks and Design
Blocks . In t h i s c a se t h e ' . ' p r e f i x i n g t h e command must be the f i r s t
c h a r a c t e r on a l i n e , a f t e r any comment symbol r e q u i r e d by t h e f i l e
format .

Runoff commands may a l s o be embedded in t h e inpu t f i l e when t h e 'LIST'
^ o p t i o n i s used . In t h i s case an e n t r y in t h e f i l e should have t h e
f f o r m a t :

RUNOFF command

If either of these methods is used to include additional formatting
commands, care should be taken not to disturb the formatting performed
by DENOTE.
DENOTE does in fact detect and interpret a number of Runoff commands,
that directly impact on its own formatting, as follows:

.WIDTH x,.W x Causes DENOTE to reset the line width
created in the output file.
'x' is required to be greater than twice
the margin size, and to not exceed 170

.SMARGIN x,.SM x Causes DENOTE to reset the side margin
size in the output file
'x' is required to be such that twice its

Page 47

Structured Programming System PE-T-513, REV " 1

value does not exceed the width currently
in force

.BLANK x, .BL x Causes DENOTE to change'the value of the
'required' blank character to 'x'

All other Runoff commands are simply passed through to the output file,

Note that although DENOTE interprets these commands and passes them
through to the output file, these are not changed for the Table of
Contents.
The line width, side margin size and 'required' space character used in
the Table of Contents are those in force when the program starts
execution.

13.4 Runoff Considerations

DENOTE requires to issue a number of general Runoff commands to ensure
that the Design Notebook is output in the intended manner.

Most of these general commands are located near the beginning of the
output file:

decimalisation setting
footer initialisation
page width setting
table of contents initialisation
'.nfill' - if DENOTE is not in ADJUST mode
'required' blank initialisation

and near the end of the output file:
'.fill' if DENOTE is not in ADJUST mode
'.adj' if DENOTE is not in ADJUST mode
table of contents closure
table of contents insertion into output file

If the output from DENOTE is to be amalgamated with another document
some additional commands may require to be inserted.

It is also important that lines of description or design do not
commence with a full-stop unless they are intended to be Runoff
commands.

Page 48

St ruc tu red Programming System PE-T-513, REV 1

14 Design Notebook

^ T h i s document should be produced in every p r o j e c t and t h i s should be
planned from day 1 of a p r o j e c t ' s l i f e .

This document o r i g i n a t e s wi th in R&D, i s developed in p a r a l l e l with the
p r o j e c t , and on complet ion i s ' s h i p p e d ' with t h e product to t he same
audience as i t s s o u r c e .

This document must c o n t a i n :

1. Any g l o b a l in fo rmat ion be longing to a p r o j e c t such a s :
h igh l e v e l des ign in fo rmat ion
d a t a s t r u c t u r e d e s c r i p t i o n s
naming conven t ions used
non - s t anda rd des ign t echn ique documenta t ion

2. Informat ion on every module:
f̂ d e s c r i p t i o n

des ign

The purpose of t h i s document i s to ma in t a in in one p l a c e t h e d e t a i l e d
design of a product and a l l i n fo rma t ion ga the r ed dur ing t h e
development .
This can be of s i g n i f i c a n t i n t e r e s t to a l l team members dur ing the
development of a p r o d u c t , and subsequen t ly to any people ass igned to
main ta in i t . (The in fo rma t ion may a l s o a s s i s t f i e l d a n a l y s t s i f
c i r c u l a t e d t h a t f a r .)

The p roduc t ion of t h i s document a t t h e end of a p r o j e c t i s a
p r o h i b i t i v e and u n s a t i s f y i n g t a s k . This i s both in t e rms of t h e sheer
s i z e of t he t a s k , and t h e e f f e c t on p r o j e c t members of having to
produce t h i s in r e t r o s p e c t .

For t h i s r e a s o n , among o t h e r s , i t i s impor tan t t h a t t h e need for t h i s
document be accepted from day 1 of a p r o j e c t . Most of t h e in format ion
t h a t be longs in t h e Design Notebook should e x i s t w i th in t h e v a r i o u s
modules from t h e i r i n c e p t i o n , wi th in t h e i r D e s c r i p t i o n Blocks and
Design Blocks .

By adopt ing t h e recommmended r o u t i n e format from day 1 of a p r o j e c t ' s
l i f e c y c l e , t h i s document can e a s i l y be produced a u t o m a t i c a l l y by using
DENOTE.

This document should be produced at r e g u l a r i n t e r v a l s by t h e p r o j e c t
l eade r to f a c i l i t a t e an u p - t o - d a t e assessment of a p r o j e c t s s t a t u s , as
input to Walkthrough s e s s i o n s , and for major r e v i e w s .

Page M9

Structured Programming System PE-T-513, REV-1

15 Other Areas for Consideration

After the i n i t i a l pol l ing of the members of R&D (UK) a l i s t was
produced i temising those areas tha t appeared to requ i re a t t e n t i o n .
This l i s t appears below:

1. Definit ion of Design Techniques requi red .
A number of books have been ordered for the R&D (UK) L ib ra ry .

2. A check l i s t required for project con t ro l .

3. The de f in i t i on of a recommended pseudo language.
The de f in i t i on of STROMA has been produced.
No correspondance between STROMA cons t ruc t s and programming
language cons t ruc t s has been suggested.

4. Standards for program layout required at f i l e l eve l and program
l e v e l .
Recomendations required on program commenting and inden ta t ion .
A Routine Format has been suggested, and a PL/P program formatter
has been produced.

5. Defini t ion required of the documents required at a l l s tages of a
p r o j e c t ' s l i f e c y c l e , with respect to t i t l e and con t en t s .

6. Guidelines requested for the use of commonly used programming
languages, in terms of both s ty l e and e f f i c i ency .

7. Naming conventions requested for f i l e s , r o u t i n e s , e t c .

8. Defini t ion and design of too l s requested t o :
a) Format PL/P programs - INFORM
b) Program design aid
c) Program commenting aid
d) Project documentation aid - DENOTE
e) Source F i l e System

9. Creation and maintenance of l i b r a r i e s for u t i l i t i e s , source
rou t ines and d e c l a r a t i o n s .

10. Organisation of on- l ine development by means of ufd s t ruc tu r ing
and the use of the source f i l e system

I t has not been poss ible to attempt to do something about a l l of these
i tems.
Decisions remain to be made as to which of the above should be followed
up, and what resources can be made avai lable for t h i s .

Page 50

Structured Programming System PE-T-513, REV 1

Appendix A - Routine Format for Design files

he following indicates how the Routine Format described earlier should
appear in a design file.
Since this file format has no language related formatting constraints,
no additional characters are included.

Each of the words:

TITLE
START-DESCRIPTION
END-DESCRIPTION
START-DESIGN

END-DESIGN

May be preceeded by any number of spaces .

Jhe format i s :

TITLE: the i d e n t i t y of the routine

START-DESCRIPTION: [<name>]
This i s a block o f narrat ive descr ib ing the function of the
r o u t i n e .
Any spaces preceeding the l i n e s in t h i s block are s i g n i f i c a n t .
END-DESCRIPTION
START-DESIGN: [<name>]
This i s a block o f design information.
Any spaces preceeding the l i n e s in t h i s block are s i g n i f i c a n t .
END-DESIGN

If a History Block is created manually (or maintained by the Source
File System) then it is recommended that its format be similar to that
of the Description Block and the Design Block.

Page 51

Structured Programming System PE-T-513, REV-1

Appendix B - Routine Format for PL/I files

The following indicates how the Routine Format described earlier should j
appear in a PL/I, PL/P or PL/IG file.
The information held in this file must be compatible with the
commenting requirements of the PL/I languages.
It must also be compatible with the constraints imposed on the format
of block comments by the comment handling of INFORM (and this has
influenced the design of the other SPS tools) .

The SPS package processes comment blocks that commence with a comment
start symbol in column 1. (INFORM will in fact recognise and process
comments that appear anywhere in a line.) If the comment start symbol
is followed by a space then this is considered to be an extension of
the comment symbol (to aid legibility). This space is removed on input
and forced on output.
In the case of any lines that continue such a comment, upto three
spaces at the beginning of the line are considered to be included for
cosmetic reasons. These are removed on input and forced on output.

Note that the Description Block and Design Block below are block
comments.
An '&' is used below to represent any space characters generated by the
SPS package.

Each of the words:

T I T L E • ^)
START-DESCRIPTION
END-DESCRIPTION
START-DESIGN
END-DESIGN
START-CODE
END-CODE

may be separated from the '/*&' or ' &&&T begining i t s l i n e by any
number of spaces . ^

The format i s :

/*& TITLE: the i d e n t i t y of the routine * /

/*& START-DESCRIPTION: [<name>]
&&& This i s a block of narrat ive descr ib ing the function
&&& of the r o u t i n e .
&&& This format w i l l be generated by any of the t o o l s in the
&&& SPS s u i t e .
&&& E N D - D E S C R I P T I O N * /

/*& START-DESIGN: [<name>]
&&& This i s a block of design information.
&&& This format w i l l be generated by any of the t o o l s in the
&&& SPS s u i t e .
&&& END-DESIGN */

Page 52

Structured Programming System PE-T-513, REV 1

/*& START-CODE: */
The program
/*& END-CODE */

If a History Block i s created manually (or maintained by the Source
F i le System) then i t i s recommended that i t s format be s imi lar to that
of the Descript ion Block and the Design Block.

Page 53

S t r u c t u r e d Programming System PE-T-513, REV-1

Appendix C - Rout ine Format for For t r an f i l e s

The fol lowing i n d i c a t e s how t h e Routine Format d e s c r i b e d e a r l i e r should
appear in a Fo r t r an f i l e .
The in fo rmat ion he ld in t h i s f i l e must be compa t ib l e with t h e
commenting r e q u i r e m e n t s of t he For t r an l a n g u a g e .

If t h e comment s t a r t symbol i s followed by a space then t h i s i s
cons idered to be an ex tens ion of t h e comment symbol (t o aid
l e g i b i l i t y) . This space i s removed on input and forced on o u t p u t .

Note t h a t t h e D e s c r i p t i o n Block and Design Block below a r e l i n e
comments.
An '&• i s used below t o r e p r e s e n t any space c h a r a c t e r s gene ra t ed by t h e
SPS package .

Each of t h e words:

TITLE ^
START-DESCRIPTION
END-DESCRIPTION
START-DESIGN
END-DESIGN
START-CODE
END-CODE

may be s epa ra t ed from the fC&' beginning i t s l i n e by any number of
s p a c e s . ^

The format i s :

C& TITLE: t h e i d e n t i t y of the r o u t i n e

C& START-DESCRIPTION: [<name>]
C& This i s a b lock of n a r r a t i v e d e s c r i b i n g t h e func t ion
C& of t h e r o u t i n e .
C& This format w i l l be genera ted by any of t h e t o o l s in t h e <**
C& SPS s u i t e . - '
C& END-DESCRIPTION

C& START-DESIGN: [<name>]
C& This i s a b lock of des ign i n f o r m a t i o n .
C& This format w i l l be genera ted by any of t h e t o o l s in t h e
C& SPS s u i t e .
C& E N D - D E S I G N

C& S T A R T - C O D E :
The program
C& END-CODE

If a H i s to ry Block i s c r e a t e d manual ly (or ma in ta ined by t h e Source
F i l e System) then i t i s recommended t h a t i t s format be s i m i l a r to t h a t
of t h e D e s c r i p t i o n Block and the Design Block.

Page 54

Structured Programming System PE-T-513, REV. 1

Appendix D - Routine Format for PMA files

he following indicates how the Routine Format described earlier should
appear in a PMA file.
The information held in this file must be compatible with the
commenting requirements of the PMA language.

If the comment start symbol is followed by a space then this is
considered to be an extension of the comment symbol (to aid
legibility). This space is removed on input and forced on output.

Note that the Description Block and Design Block below are line
comments.
An '&' is used below to represent any space characters generated by the
SPS package.

Each of the words:

#N TITLE
START-DESCRIPTION
END-DESCRIPTION
START-DESIGN
END-DESIGN
START-CODE
END-CODE

may be separated from the '*&' beginning i t s l i n e by any number of
paces.

The format i s :

*& TITLE: the i d e n t i t y of the rout ine

*& START-DESCRIPTION: [<name>]
*& This i s a block of narra t ive descr ib ing the function
*& of the r o u t i n e .
*& This format w i l l be generated by any of the t o o l s in the
*& SPS s u i t e .
*& END-DESCRIPTION
*& START-DESIGN: [<name>]
*& This i s a block of des ign information.
*& This format w i l l be generated by any of the t o o l s in the
*& SPS s u i t e .
*& END-DESIGN

*& START-CODE:
The program
*& END-CODE

If a History Block i s created manually (or maintained by the Source
F i l e System) then i t i s recommended that i t s format be s imi lar to that

w$f the Descr ipt ion Block and the Design Block.

Page 55

Structured Programming System PE-T-513, REV" 1

Appendix E - Routine Format for COBOL files

The following indicates how the Routine Format described earlier should
appear in a COBOL file.
The information held in this file must be compatible with the
commenting requirements of the COBOL language.

If the comment start symbol is followed by a space then this is
considered to be an extension of the comment symbol (to aid
legibility). This space is removed on input and forced on output.

Note that the Description Block and Design Block below are line
comments.
An '&• is used below to represent any space characters generated by the
SPS package.
Note that '$' is used below to represent a mandatory character, thus
the '*' will appear in position 7 of a line.

Each of the words:

TITLE
START-DESCRIPTION
END-DESCRIPTION
START-DESIGN
END-DESIGN
START-CODE
END-CODE

may be separated from the '$$$$$$*&' beginning i t s l i n e by any number
of spaces .

The format i s :

$$$$$$*& TITLE: the i d e n t i t y of the rout ine

$$$$$$*& START-DESCRIPTION: [<name> 1
$$$$$$*& This i s a block of narrat ive descr ib ing the
$$$$$$*& function of the routine.
$$$$$$*& This format w i l l be generated by any o f the t o o l s in the
$$$$$$*& SPS s u i t e .
$$$$$$*& END-DESCRIPTION

$$$$$$*& START-DESIGN: [<name>]
$$$$$$*& This i s a block of des ign information.
$$$$$$*& This format w i l l be generated by any of the t o o l s in the
$$$$$$*& SPS suite.
$$$$$$*& END-DESIGN

$$$$$$*& START-CODE:
The program
$$$$$$*& END-CODE

If a History Block is created manually (or maintained by the Source
File System) then it is recommended that its format be similar to that

Page 56

Structured Programming System PE-T-513, REV 1

of the Description Block and the Design Block.

Page 57

Structured Programming System PE-T-513, REV-1

Appendix F - Routine Format for Pascal files

The following indicates how the Routine Format described earlier should ^
appear in a Pascal file.
The information held in this file must be compatible with the
commenting requirements of the Pascal language.

The SPS package processes comment blocks that commence with a comment
start symbol in column 1.
If the comment start symbol is followed by a space then this is
considered to be an extension of the comment symbol (to aid
legibility). This space is removed on input and forced on output.
In the case of any lines that continue such a comment, upto two spaces
at the beginning of the line are considered to be included for cosmetic
reasons. These are removed on input and forced on output.

Note that the Description Block and Design Block below are block
comments.
An '&' is used below to represent any space characters generated by the
SPS package.

Each of the words:

TITLE
START-DESCRIPTION
END-DESCRIPTION
START-DESIGN
END-DESIGN ^
START-CODE
END-CODE

may be s e p a r a t e d from t h e ' { & ' or '&&' b e g i n n i n g i t s l i n e by any number
of s p a c e s .

The fo rma t i s :

{& TITLE: t h e i d e n t i t y o f t h e r o u t i n e } A%

{& START-DESCRIPTION: [<name>]
&& This i s a block of na r r a t i ve describing the function
&& of the r o u t i n e .
&& This format wi l l be generated by any of the t o o l s in the
&& SPS s u i t e .
&& END-DESCRIPTION }

{& START-DESIGN: [<name>]
&& T h i s i s a b l o c k o f d e s i g n i n f o r m a t i o n .
&& T h i s fo rmat w i l l be g e n e r a t e d by any of t h e t o o l s in t h e
&& SPS s u i t e
&& END-DESIGN }

{& START-CODE: }
The program **%
{& END-CODE }

Page 58

Structured Programming System PE-T-513, REV 1

If a History Block is created manually (or maintained by the Source
File System) then it is recommended that its format be similar to that
of the Description Block and the Design Block.

0$\

Page 59

Structured Programming System PE-T-513, REV-1

Appendix G - Routine Format for Basic files

The following indicates how the Routine Format described earlier should
appear in a Basic file.
The information held in this file must be compatible with the
commenting requirements of the Basic language.

If the comment start symbol is followed by a space then this is
considered to be an extension of the comment symbol (to aid
legibility). This space is removed on input and forced on output.

Note that the Description Block and Design Block below are line
comments.
An '&* is used below to represent any space characters generated by the
SPS package.
Note that '$' is used below to represent a mandatory character, thus
the ?REMf will appear in position 6 of a line. (This allows the

inclusion of a line number of upto five digits.)

Each of the words:

TITLE
START-DESCRIPTION
END-DESCRIPTION
START-DESIGN
END-DESIGN
START-CODE
END-CODE

may b e s e p a r a t e d from t h e ,$$$$$REM&' b e g i n n i n g i t s l i n e by any number
of s p a c e s .

The fo rma t i s :

$$$$$REM& TITLE: t h e i d e n t i t y o f t h e r o u t i n e

$$$$$REM& START-DESCRIPTION: [<name>]
$$$$$REM& T h i s i s a b l o c k o f n a r r a t i v e d e s c r i b i n g t h e
$$$$$REM& f u n c t i o n of t h e r o u t i n e .
$$$$$REM& T h i s f o rma t w i l l be g e n e r a t e d by any o f t h e t o o l s i n t h e
$$$$$REM& SPS s u i t e .
$$$$$REM& END-DESCRIPTION

$$$$$REM& START-DESIGN: [<name>]
$$$$$REM& T h i s i s a b l o c k o f d e s i g n i n f o r m a t i o n .
$$$$$REM& T h i s fo rmat w i l l be g e n e r a t e d by any of t h e t o o l s i n t h e
$$$$$REM& SPS s u i t e .
$$$$$REM& END-DESIGN

$$$$$REM& START-CODE:
The program
$$$$$REM& END-CODE

I f a H i s t o r y Block i s c r e a t e d m a n u a l l y (o r m a i n t a i n e d by t h e S o u r c e

Page 60

Structured Programming System PE-T-513, REV 1

File System) then it is recommended that its format be similar to that
of the Description Block and the Design Block.

Page 61

Structured Programming System PE-T-513, REV-1

Appendix H - Routine Format for CPL files

The following indicates how the Routine Format described earlier should
appear in a CPL file.
The information held in this file must be compatible with the
commenting requirements of the CPL language.

If the comment start symbol is followed by a space then this is
considered to be an extension of the comment symbol (to aid
legibility). This space is removed on input and forced on output.

Note that the Description Block and Design Block below are line
comments.
An '&' is used below to represent any space characters generated by the
SPS package.

Each of the words:

TITLE
START-DESCRIPTION
END-DESCRIPTION
START-DESIGN
END-DESIGN
START-CODE
END-CODE

may be s e p a r a t e d from t h e ' / * & ' b e g i n n i n g i t s l i n e by any number o f
s p a c e s .

The fo rma t i s :

/*& TITLE: t h e i d e n t i t y o f t h e r o u t i n e

/*& START-DESCRIPTION: [<name>]
/*& T h i s i s a b l o c k o f n a r r a t i v e d e s c r i b i n g t h e f u n c t i o n
/*& o f t h e r o u t i n e .
/*& T h i s f o r m a t w i l l be g e n e r a t e d by any o f t h e t o o l s i n t h e
/*& SPS s u i t e .
/*& END-DESCRIPTION

/*& START-DESIGN: [<name>]
/*& T h i s i s a b l o c k o f d e s i g n i n f o r m a t i o n .
/*& T h i s fo rma t w i l l be g e n e r a t e d by any o f t h e t o o l s i n t h e
/*& SPS s u i t e .
/*& END-DESIGN

/*& START-CODE:
The program
/*& END-CODE

I f a H i s t o r y Block i s c r e a t e d m a n u a l l y (o r m a i n t a i n e d by t h e S o u r c e
F i l e System) t h e n i t i s recommended t h a t i t s f o rma t be s i m i l a r t o t h a t
o f t h e D e s c r i p t i o n Block and t h e Des ign B l o c k .

Page 62

S t r u c t u r e d Programming Sys tem PE-T-513, REV 1

Appendix I - Routine Format for LISP files

he following indicates how the Routine Format described earlier should
[appear in a LISP file.
IThe information held in this file must be compatible with the
[commenting requirements of the LISP language.

I If the comment start symbol is followed by a space then this is
I considered to be an extension of the comment symbol (to aid
[legibility). This space is removed on input and forced on output.

[Note that the Description Block and Design Block below are line
I comments.
!An '&' is used below to represent any space characters generated by the
!SPS package.

Each of the words:

TITLE
START-DESCRIPTION
END-DESCRIPTION
START-DESIGN
END-DESIGN
START-CODE
END-CODE

'may be s e p a r a t e d from t h e
^ s p a c e s .

IThe fo rma t i s :

' ; & ' b e g i n n i n g i t s l i n e by any number of

;& TITLE: t h e i d e n t i t y o f t h e r o u t i n e

& START-DESCRIPTION: [<name>]
& T h i s i s a b l o c k o f n a r r a t i v e d e s c r i b i n g t h e f u n c t i o n
& of t h e r o u t i n e .
& T h i s f o r m a t w i l l be g e n e r a t e d by any o f t h e t o o l s i n t h e
& SPS s u i t e .
& END-DESCRIPTION

& START-DESIGN: [<name>]
& T h i s i s a b l o c k o f d e s i g n i n f o r m a t i o n .
& T h i s fo rma t w i l l b e g e n e r a t e d by any o f t h e t o o l s i n t h e
& SPS suite.
& END-DESIGN

;& START-CODE:
The program
;& END-CODE

[I f a H i s t o r y Block i s c r e a t e d m a n u a l l y (o r m a i n t a i n e d by t h e S o u r c e
[F i l e Sys tem) t h e n i t i s recommended t h a t i t s f o r m a t be s i m i l a r t o t h a t

j|j*pf t h e D e s c r i p t i o n Block and t h e Des ign B l o c k .

Page 63

Structured Programming System PE-T-513, REV- 1

{Appendix J - Routine Format for EMACS files

IThe following indicates how the Routine Format described earlier should
I appear in a EMACS file.
IThe information held in this file must be compatible with the
icommenting requirements of the EMACS language.

ilf the comment start symbol is followed by a space then this is
!considered to be an extension of the comment symbol (to aid
ilegibility). This space is removed on input and forced on output.

iNote that the Description Block and Design Block below are line
! comments.
i
i
i
i

An '&T is used below to represent any space characters generated by the
SPS package.

Each of the words:

TITLE
START-DESCRIPTION
END-DESCRIPTION
START-DESIGN
END-DESIGN
START-CODE
END-CODE

imay be separated from the ';&* beginning i t s l i n e by any number of
i spaces .

IThe format i s :

i ;& TITLE: the i d e n t i t y of the routine

i ;& START-DESCRIPTION: [<name>]
I ;& This i s a block of narrat ive descr ib ing the function
! ;& of the routine.
i ;& This format will be generated by any of the tools in the «\
! ;& SPS s u i t e .
! ;& END-DESCRIPTION

! ;& START-DESIGN: [<name>]
i ;& This i s a block of design information.
I ;& This format w i l l be generated by any of the t o o l s in the
! ;& SPS s u i t e .
i ;& END-DESIGN

! ;& START-CODE:
i The program
i ;& END-CODE

Fi l e System) then i t i s recommended that i t s format be s imi lar to that
of the Descript ion Block and the Design Block. ^

Page 64

Structured Programming System PE-T-513, REV 1

Appendix K - U-0024

1. Introduct ion

The i n i t i a l motivation for the project was the d e s i r e to improve
the qua l i t y of R & D (UK) software ou tpu t .

This was to be done by considering the developing of a 'S t ructured
Programming System'. I t was o r i g i n a l l y thought t ha t t h i s would
cons i s t of:

software t o o l s
programmers guide (including standards)

Because t h i s i s being considered by PEOPLE, for PEOPLE to USE the
approach taken was to s o l i c i t peoples op in ions . R&D (UK) s ta f f

m were asked to consider the following t o p i c s :

design techniques
design languages
program layout
documentation
s t ruc tured coding methods
too l s

This developed naturally to include a number of other areas of
^ concern to the individuals polled.

The following sections represent as closely as possible the views
expressed during the discussions held.

It is important to notice that an area of general concern was
project organisation. People were interested in seeing the
structured approach applied throughout a project.

PN The views expressed in this document will be used as input to the
SPS project.

2. Design Techniques

1. Design techniques desparately needed.

2. People aware of (and attempted) a 'Top-Down' approach but
some mutations ie 'Middle-Out'

3. Appreciation of value of obtaining a whole design before
coding starts but not always adhered to

4. They felt that a comparison of currently known techniques
ppN would be useful but that a justified recommendation of a

technique would be satisfactory.

Page 65

St ruc tu red Programming System PE-T-513, REV*1

5. A recommended methodology must be u s a b l e , in t h e normal
working environment

6. Strong requ i rement for recommendations on p r o j e c t
o r g a n i s a t i o n

7. Techniques used should encompass and f a c i l i t a t e t e s t i n g of
t h e des ign eg walkthroughs

8. P r o j e c t o r g a n i s a t i o n should i nc lude d e f i n i t i o n of documents
to be produced.

9 . The de s ign methodology adopted should encourage c o n s i d e r a t i o n
of t h e f u t u r e t e s t i n g r equ i r emen t s

3 . Design Languages (DL)

1. People f e l t t h a t t h e s e can be usefu l but must be u s a b l e

2. People f e l t t h a t s e l f - d i s c i p l i n e i s needed t o m a i n t a i n a
des ign language problem s ta t ement in an u p - t o - d a t e form.
Many people f e l t r e l u c t a n t to t r u s t a de s ign language
s t a t e m e n t of a problem for t h i s r e a s o n .

3 . To encourage widespread use of a DL t h e language chosen must
be l i k e d and easy t o ma in t a in

4. F i n i t e S t a t e Diagrams have been adapted to t h i s a rea for
problems invo lv ing c r i t i c a l man ipu l a t i on of v a r i a b l e s and
e v e n t s .

5 . F lowchar t s a r e sometimes used but people f e l t c o n s t r a i n e d by
t h e t e c h n i q u e . Designs were not t aken to a d e t a i l e d l e v e l
with t h i s approach .

6. Michael Jackson Technique as a new approach has been t r i e d
and found to have d e f i c i e n c i e s . The ph i lo sophy i s accepted
and found use fu l but i t s r e p r e s e n t a t i o n i s d i f f i c u l t to
hand le and /o r m a i n t a i n .

7 . Warnier Diagrams as a new approach has been t r i e d and i s
ga in ing in p o p u l a r i t y .

8. R-no ta t ion was f e l t to be des igned for use with assembly
l a n g u a g e s . I t was f e l t by some people to be s u p e r f l u o u s in
con junc t ion with a h i g h - l e v e l language eg P L / 1 .
Those people supposedly us ing i t have extended i t .

9. An e v o l u t i o n from R-Notation i s t he development of s t r u c t u r e d
commenting.

10. People would l i k e to see a mapping between DL c o n s t r u c t s and

Page 66

/S5K

Structured Programming System PE-T-513, REV 1

programming language constructs for commonly used programming
languages.

11. From 10 the problem of conflict between efficiency and style
arises and guidelines are required.

4. Program Layout

1. People were familiar with the mandatory requirement for a
'3-line header' and accepted this.

2. Few people were familiar with the extension to this proposed
in PE-A-49.

3. The benefit of keeping routines to 2 listing pages or less
was appreciated by a majority of people, but concern was
expressed over the effect of incorporating large comments
into these routines.

4. Though people were agreed on the benefits of commenting their
code, this was sometimes done after the code was felt to be
correct.

5. If a standard layout was adopted some interest was shown in a
process where retrospective checking of this was performed.

6. Doubt was expressed as to the value of including distributed
comments in a 'short' routine written in a high-level
language.

7. It was felt that if a standard block comment was introduced
it should include more than that proposed in PE-A-49
eg information on external program entities

revision numbers

8. The current conflicts between 80 column and 120 column media
causes some problems.

9. People see a need for simple layout controls
eg form feeds

5. Documentation

1. General problems in this area due to lack of direction and
standards. All understood the requirement for documentation
to be produced.

2. People felt that they would benefit from the existence of
guidelines as to what documents should be produced during a
project.

Page 67

Structured Programming System Pg-T-513, REV* 1

The guidelines should contain templates and/or checklists^
with respect to the minimum contents and structure of each^
document.

3. Document naming conventions should exist, allowing documents
to be easily identified.

4. People proposed a number of possible documents and these
proposals have contributed towards the recommended documents.

6. Structured Coding Methods

1. People expressed doubts as to the usefulness of structured
coding methods applied to unstructured programming languages.

2. People would like to see some DOs and DONTs for each commonly
used language, in terms of efficiency and style.

3. People felt that the use of Structured Coding Methods should
not lead to the generation of multitudes of small routines
(for its own sake) without regard for efficiency.

4. People have used various naming conventions to distribute
information through their sources. Some people thought that ^
there, was a benefit to be obtained from this being /
formalised .

7. Tools

1.. The only existing tool that people seemed interested in
discussing was the indenter.

People are generally dissatisfied with the formatting
performed by the indenter, but some are prepared to use it.

2. A tool suggested was one that would check for adherance to
layout standards.

3. People have an awareness of the possibility of extracting
comments from programs.

A desire to have this output compatible with their
documentation was expressed.

4. The indenter
fe l t to be necessary to improve readabi l i ty
differing views expressed on formatting required
fel t that good layouts are destroyed i

Page 68

St ruc tu r ed Programming System PE-T-513, REV 1

5. If a h i g h - l e v e l des ign t echn ique i s t o be used t h a t i nvo lves
some s o r t of schemat ic r e p r e s e n t a t i o n then t o o l s must be made
a v a i l a b l e t o handle t h i s .

8. Organ i sa t i on

This s e c t i o n i s inc luded in response to peop le s r e q u i r e m e n t s .

1. There i s an i n t e r e s t in t h e o r g a n i z a t i o n of p r o j e c t ufds to
a s s i s t in p r o j e c t a d m i n i s t r a t i o n . These could be sub -d iv ided
as f o l l o w s :

sources
binaries
documentation
etc

2. Interest was expressed in the creation of various library
structures for use by R & D (UK) personnel. If these are
created an administrative mechanism/tool must be available
and be used.

utilities
generally useful pieces of software that do not belong in
CMDNCO
information on these must be maintained
source subroutines
generally useful source subroutines not appropriate for
inclusion in APPLIB
these should be source loaded into peoples programs, and
must not include any insertions that are non-standard
these must all include a standard block comment
standard declarations
people would like to see declarations available for
standard library subroutines
these should be source loaded into peoples programs

3. Attention was drawn to the Proposed Source File System.
This may impact some or all of the proposed tools

Page 69

REFORM: Design Formatter [Rev 2.0]

The correct command line format is:
REFORM input_treename [output_treename]

plus the optional keywords:
-NQ or -M)_QUERY to allow overwriting permission
-NUC or -N0JJPPER_CASE to prevent converting keywords to

upper case
-UCL or -UPPER CASE LABELS to force labels to upper case

/m\

ss\

INFORM: Instruction FORMatter [Rev 2.0]

The correct command line format is :
INFORM <input> [<output>][<option parameter>]
The option parameters are :

-NQ or -NO_QUERY to allow overwritting permission
-CCOL xx or -COMMENT_COL xx
-IM xx or -MARGIN xx column from which identation is

measured
-RM xx or -RMARGIN xx
-IND xx or -INDENT xx spaces for each level of identation
-FIIIi default
-NF or -N0_FILL

(xx = decimal number)

RESTATE: REpreSenTATion convErter [Rev 2.0]

The correct command line format is:
RESTATE input_treename [output_treename]
plus the optional keywords:

-NQ or -M)_QUERY to allow overwriting of output file
-xxx to indicate the required format of the output file

when no output file is specified, and the format is to
change
xxx must "be one of:

PL1, PLP, PL1G, M , F77, PMA, DES, PASCAL, COBOL, BASIC, CPL,
LISP, MACS
when this option is used the output file name is constructed
from the body of the input treename and xxx

DENOTE: DEsign NOTEbook builder [Rev 2.0]

The correct command line format is:
DENOTE [input_treename] [output_treename]

plus the optional keywords:
-CAT or -CATALOGUE
-DGN or -DESIGN
-DESC or -DESCRIPTION
-ADJ or -ADJUST
-NQ or -N0_QUERY
-WID x or -WIDTH x
-BL x or -BLANK x
-IS or -INFORM_SPLIT
-NM or -NO_MESSAGE
-R or -REPORT

to treat the input as a list of files
to extract only design blocks
to extract only description blocks
to generate output in RUNOFF adjust mode
to allow overwriting of output file
to set runoff line width to 'x' chars.
to set runoff space character to 'x'
to inform user of split lines
to put all error messages into a file
to report program statistics

TEMPLATE: Pile Construction Utility [Rev 2.0]

The correct command line format is:
TEMPLATE <name>[.<suffix>] [options]
options -PATH <pathname>

-N0_QUERY or -NQ
-<suffix>

ACCEPTABLE SUFFIXES

LANGUAGE

PL/I
Fortran
Prime Macro Assembler
Cobol
Pascal
Basic
Command Procedure Language
Lisp
Emacs
Design

SUFFIX

- PL1 or PL1G- or PLP
- FTN or F77
- PMA
- COBOL
- PASCAL
- BASIC
- CPL
- LISP
- EMACS
- DES (NOTE: this will

block)
not give a code

* NOTE: All products have been modified to conform to master disk
p> standards. Por a description of these modifications, please
w read B1P019>STAM)AEDS.RUH0.

/is^

	Cover Page
	i
	Table of Contents
	ii
	iii
	iv
	Changes from Previous Version
	2
	Introduction
	3
	4
	SPS Project
	5
	Routine Format
	6
	7
	8
	9
	10
	11
	Design Expression
	12
	13
	14
	15
	16
	17
	18
	19
	Project Libraries
	20
	21
	Walkthroughs
	22
	23
	24
	TEMPLATE
	25
	26
	27
	REFORM
	28
	29
	30
	31
	RESTATE
	32
	33
	34
	INFORM
	35
	36
	37
	38
	39
	Warnier Diagrams
	40
	SDL
	41
	DENOTE
	42
	43
	44
	45
	46
	47
	48
	Design Notebook
	49
	Other Areas for Consideration
	50
	Appendix A
	Routine Format for Design files
	51
	Appendix B
	Routine Format for PL/I files
	52
	53
	Appendix C
	Routine Format for Fortran files
	54
	Appendix D
	Routine Format for PMA files
	55
	Appendix E
	Routine Format for COBOL files
	56
	57
	Appendix F
	Routine Format for Pascal files
	58
	59
	Appendix G
	Routine Format for Basic files
	60
	61
	Appendix H
	Routine Format for CPL files
	62
	Appendix I
	Routine Format for LISP files
	63
	Appendix J
	Routine Format for EMACS files
	64
	Appendix K
	U-0024 (needs survey)
	65
	66
	67
	68
	69
	70
	71
	72
	Command Line Helps
	73
	74
	75

